Mathematical Model Regarding the Processing Accuracy in Milling of Spherical Surfaces

Article Preview

Abstract:

The paper presents a mathematical model that allows the determination of sphericity deviation for milling of kinematic generated spherical surfaces, considering the influence of the adjustment errors of the technological system over the processing accuracy. The model highlights the importance of diminishing the adjustment errors and the clearances in the technological system. Also, the mathematical model allows the selection of a processing technological system according to the desired accuracy for the manufactured spherical parts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

421-426

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Neagu, S. Tonoiu, M. Purcărea, M. Iliescu, Tehnologia Construcţiei de Maşini – Tehnologii de prelucrare (Manufacturing Engineering - Processing Technologies), MATRIX ROM Publisher, Bucharest (2002).

Google Scholar

[2] I. Luncaș, C. Neagu, A. Vișan, Tendințe privind utilizarea lagărelor sferice de alunecare (Trends regarding the utilisation of gliding spherical bearings), Tribotehnica, Hunedoara, Romania (1990).

Google Scholar

[3] C. Neagu C., Lupeanu M. (Ulmeanu), Rennie A., Geometry optimization of tools used in milling of spherical surfaces, Proceedings of The 1st Sustainable Intelligent Manufacturing Conference, IST PRESS Publishing, ISBN 978-989-8481-03-0, Leiria, Portugal, (2011).

Google Scholar

[4] C. Neagu, M. Lupeanu (Ulmeanu), A. Rennie, A new design concept for milling tools of spherical surfaces obtained by kinematic generation, Applied Mathematical Modelling, Elsevier Publishing, ISSN 0307-904X, Volume 37, Issue 9, ISI Impact Factor: 1. 579, (2013).

DOI: 10.1016/j.apm.2012.12.017

Google Scholar

[5] J. Ziegert, V. Tymianski, Air bearing kinematic couplings, Precision Engineering 31 (2007) 73 – 82.

DOI: 10.1016/j.precisioneng.2006.02.006

Google Scholar

[6] A. Slocum, Kinematic couplings: A review of design principles and applications, International Journal of Machine Tools & Manufacture 50 (4) (2010) 310 – 327.

DOI: 10.1016/j.ijmachtools.2009.10.006

Google Scholar

[7] S. Radzevich, Kinematic geometry of surface machining, CRC Press, by Taylor & Francis Group, LLC, ISBN-13: 978-1420063400 (2008).

Google Scholar

[8] L. Rubio, M. De la Sen, A. Ibeas, Some aspects about milling: expert system for cutting parameters selection and control designs, Book Chapter in Advances Technologies: Research, Development and Application, Verlag Robert Mayer-Scholz, Croatia (2006).

Google Scholar

[9] H. Tanaka, M. Sato, H. Yoshida, S. Ohta, S. Okamura, Study on Machining Error in Ball End Milling of Spherical Surface, Journal: Key Engineering Materials, Volume: Progress of Machining Technology (2009) 456 – 459.

DOI: 10.4028/www.scientific.net/kem.407-408.456

Google Scholar

[10] Z.C. Wei, M.J. Wang, R.G. Ma, L. Wang, Modeling of process geometry in peripheral milling of curved surfaces, Journal of Materials Processing Technology 210 (5) (2010) 799–806.

DOI: 10.1016/j.jmatprotec.2010.01.011

Google Scholar