[1]
L. – A. Mihail, The Quality of Deep Drilling Process by Roughness's Contact Measurement, Proceedings of the 6th WSEAS International Conference on Manufacturing Engineering, Quality and Production Systems (MEQAPS , 13) Romania (2013) 60-65.
Google Scholar
[2]
Sandvik Coromant, Metal Cutting Technology Training Handbook 2011-2, C-2948: 125 MUL.
Google Scholar
[3]
Hartner, Precision Cutting Tools – Technical Manual, Germany, (2012).
Google Scholar
[4]
G. Taguchi, S. Chowdhury, Y. Wu, Tacughi's Quality Engineering Handbook, John Willey & Sons Inc. and ASI LLC Michigan, United States of America, (2004).
Google Scholar
[5]
L. – A., Mihail, Robust Engineering of Deep Drilling Process by Surface State Optimization, 14th CIRP CMMO, Turin, Italy, published by Elsevier B.V., Procedia CIRP 8 ( 2013 ) 581 – 586.
DOI: 10.1016/j.procir.2013.06.154
Google Scholar
[6]
D. Biermann, I. Iovkova, H. Blumb, A. Rademacherb, K. Taebib, F.T. Suttmeierc, N. Kleinc, Thermal Aspects in Deep Hole Drilling of Aluminium Cast Alloy Using Twist Drills and MQL, 45th CIRP Conference on Manufacturing Systems, 3 (2012), 245–250.
DOI: 10.1016/j.procir.2012.07.043
Google Scholar
[7]
K. Martinsena, H. Holtskoga, C.E. Larssona, Social Aspects of Process Monitoring in Manufacturing Systems, Procedia CIRP 3 ( 2012 ) 567 – 572.
Google Scholar
[8]
S.R. Gaitondea, Karnikb, J. Paulo Davimc, Taguchi multiple-performance characteristics optimization in drilling of medium density fibreboard (MDF) to minimize delamination using utility concept, Journal of Materials Processing Technology 196 (2008).
DOI: 10.1016/j.jmatprotec.2007.05.003
Google Scholar
[9]
E. Kilickap, Optimization of cutting parameters on delamination based on Taguchi method during drilling of GFRP composite, Expert Syst. with Applications 37 (2010) 6116–6122.
DOI: 10.1016/j.eswa.2010.02.023
Google Scholar
[10]
C.C. Tsaoa, H. Hochengb, Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network, Journal of Materials Processing Technology 203 (2008) 342 – 348.
DOI: 10.1016/j.jmatprotec.2006.04.126
Google Scholar
[11]
M. Biermann, N. Kersting, Kessler, Process adapted structure optimization of deep hole drilling tools, CIRP Annals - Manufacturing Technology 58 (2009) 89–92.
DOI: 10.1016/j.cirp.2009.03.102
Google Scholar
[12]
A. Zabel, M. Heilmann, 2012, Deep hole drilling using tools with small diameters - Process analysis and process design, CIRP Annals - Manufacturing Technology 61 (2012) 111–114.
DOI: 10.1016/j.cirp.2012.03.002
Google Scholar
[13]
Y-T. Liu, W-C. Chang, Y. Yamagata, 2010, A study on optimal compensation cutting for an aspheric surface using the Taguchi method, CIRP JManufSciTechn 3, 40–48.
DOI: 10.1016/j.cirpj.2010.03.001
Google Scholar
[14]
J. P. Costes, V. Moreau, 2011 Surface roughness prediction in milling based on tool displacements, Journal of Manufacturing Processes 13, 133–140.
DOI: 10.1016/j.jmapro.2011.02.003
Google Scholar
[15]
G. Byrne, G.E. O'Donnell, 2007, An Integrated Force Sensor Solution for Process Monitoring of Drilling Operations, Annals of the CIRP Vol. 56, 89-92.
DOI: 10.1016/j.cirp.2007.05.023
Google Scholar
[16]
R. M'Saoubi, T. Larsson, J. Outeiro, Y. Guo, S. Suslov , C. Saldana, S. Chandrasekar, Surface integrity analysis of machined Inconel 718 over multiple length scales, CIRP Annals - Manufacturing Technology 61 (2012) 99–102.
DOI: 10.1016/j.cirp.2012.03.058
Google Scholar
[17]
Mitutoyo, Surftest SV-600, Surface Roughness Testing System, Catalog US4127-178 (4), Japan.
Google Scholar
[18]
http: /necumer. com/index. php/en-us/2013-02-13-09-28-24/2013-02-13-09-28-53/2013-02-13-09-29-52/necuron-1001.
Google Scholar