[1]
F. Hasan, P.K. Jain, D. Kumar, Service Level as Performance Index for Reconfigurable Manufacturing System Involving Multiple Part Families, Procedia Engineering 69 (2014) 814-821.
DOI: 10.1016/j.proeng.2014.03.058
Google Scholar
[2]
H. Wiendahl, H. ElMaraghy, P. Nyhuis, M. Zäh, H. Wiendahl, N. Duffie, M. Brieke, Changeable Manufacturing - Classification, Design and Operation, Annals of CIRP Vol. 56/2 (2007) 783-809.
DOI: 10.1016/j.cirp.2007.10.003
Google Scholar
[3]
A. Siddiqi, O. de Weck , Reconfigurability in planetary surface vehicles , Acta Astronautica 64 (2009) 589-601.
DOI: 10.1016/j.actaastro.2008.10.010
Google Scholar
[4]
Definition of Reconfigurability, http: /en. wikipedia. org/wiki/Reconfigurability.
Google Scholar
[5]
What is Reconfigurability, http: /www. igi-global. com/dictionary/reconfigurability/24734.
Google Scholar
[6]
O. Makinde, K. Mpofu, Review of the Status of Reconfigurable Manufacturing Systems Application in South Africa Mining Machinery Industries, Procedia CIRP 17 (2014) 136-141.
DOI: 10.1016/j.procir.2014.02.035
Google Scholar
[7]
M. Hedelind, On Reconfigurable Robotic Working Cells – a Case Study, Technical Report, School if Innovation, Design and Engineering, Mälardalen University, Sweeden (2008).
Google Scholar
[8]
F. Hasan, P.K. Jain, D. Kumar, Machine Reconfigurability Models Using Multi-Attribute Utility Theory and Power Function Approximation, Procedia Engineering 64 (2013) 1354-1363.
DOI: 10.1016/j.proeng.2013.09.217
Google Scholar
[9]
Y. Koren, U. Heisel, F. Joveane, T. Morwaki, G. Pritschow, G. Ulsoy, H. Van Brussel, Reconfigurable manufacturing systems, CIRP Ann., 48/2 (1999) 527–541.
DOI: 10.1016/s0007-8506(07)63232-6
Google Scholar
[10]
K.K. Goyal, P.K. Jain, M. Jain, A novel methodology to measure the responsiveness of RMTs in reconfigurable manufacturing system, Journal of Manufacturing Systems 32 (2013) 724-730.
DOI: 10.1016/j.jmsy.2013.05.002
Google Scholar
[11]
I. Chalfoun, K. Kouiss, A.L. Huyet, N. Bouton, Proposal for a Generic Model Dedicated to Reconfigurable and Agile Manufacturing Systems (RAMS), Procedia CIRP 7 (2013) 485-490.
DOI: 10.1016/j.procir.2013.06.020
Google Scholar
[12]
J. Li, M. Zhou, T. Guo, Y. Gan, X. Dai , Robust control reconfiguration of resource allocation systems with Petri nets and integer programming , Automatica 50 (2014) 915-923.
DOI: 10.1016/j.automatica.2013.12.015
Google Scholar
[13]
I. Chalfoun, K. Kouiss, N. Bouton, P. Ray, Characterization of a Reconfigurable and Agile Manufacturing System (RAMS), 14th International Conference on Modern Information Technology in the Innovation Processes of the Industrial Enterprises, Hungary (2012).
Google Scholar
[14]
C. Canal, J. Cámara, G. Salaün, Structural reconfiguration of systems under behavioral adaptation , Science of Computer Programming 78 (2012) 46-64.
DOI: 10.1016/j.scico.2011.09.003
Google Scholar
[15]
N. Medvidovic, ADLs and dynamic architecture changes, SIGSOFT 96 Workshop, ACM (1996) 24-27.
Google Scholar
[16]
R. Setchi, N. Lagos, Reconfigurability and reconfigurable manufacturing systems – state of the art review, IEEE Conference on Industrial Informatics, INDIN'04, Berlin, June 24-27 (2004) 529-535.
DOI: 10.1109/indin.2004.1417401
Google Scholar
[17]
A. Al-Zaher, W. ElMaraghy, Design Method of Under-Body Platform Automotive Framing Systems , Procedia CIRP 17 (2014) 380-385.
DOI: 10.1016/j.procir.2014.03.116
Google Scholar
[18]
K.K. Mittal, P.K. Jain, An Overview of Performance Measures in Reconfigurable Manufacturing System , Procedia Engineering 69 (2014) 1125-1129.
DOI: 10.1016/j.proeng.2014.03.100
Google Scholar
[19]
J. Padayachee, G. Bright , Modular machine tools: Design and barriers to industrial implementation , Journal of Manufacturing Systems 31 (2012) 92-5.
DOI: 10.1016/j.jmsy.2011.10.003
Google Scholar
[20]
X. Meng, Modeling of reconfigurable manufacturing systems based on colored timed object-oriented Petri nets , Journal of Manufacturing Systems 29 (2010) 81-90.
DOI: 10.1016/j.jmsy.2010.11.002
Google Scholar
[21]
G. Putnik, A. Sluga, H. ElMaraghy, R. Teti, Y. Koren, T. Tolio, B. Hon, Scalability in manufacturing systems design and operation: State-of-the-art and future developments roadmap, CIRP Annals - Manufacturing Technology 62 (2013) 751-774.
DOI: 10.1016/j.cirp.2013.05.002
Google Scholar
[22]
A. Al-Zaher, W. ElMaraghy, Design of reconfigurable automotive framing system, CIRP Annals - Manufacturing Technology 62 (2013) 491-494.
DOI: 10.1016/j.cirp.2013.03.116
Google Scholar
[23]
A. Siddiqi, O. de Weck, Modeling Methods and Conceptual Design Principles for Reconfigurable Systems, Journal of Mechanical Design 130 (2008) 45–4111.
DOI: 10.1115/1.2965598
Google Scholar
[24]
G. Lee, Reconfigurability Consideration Design of Components and Manufacturing Systems, Int. J. Adv. Manuf. Technol. 13 (1997) 376-386.
DOI: 10.1007/bf01178258
Google Scholar
[25]
A. Farid, D. McFarlane, A Design Structure Matrix Based Method for Reconfigurability Measurement of Distributed Manufacturing Systems, Int. J. of Intelligent Control and Systems 12/2 (2007) 118-129.
Google Scholar
[26]
E. Marsillac, J. Roh, Connecting product design, process and supply chain decisions to strengthen global supply chain capabilities, Int. J. Production Economics 147 (2014) 317-329.
DOI: 10.1016/j.ijpe.2013.04.011
Google Scholar
[27]
A. Aguilar, A. Roman-Flores, J. Huegel, Design, refinement, implementation and prototype testing of a reconfigurable lathe-mill, Journal of Manufacturing Systems 32 (2013) 364-371.
DOI: 10.1016/j.jmsy.2013.01.003
Google Scholar
[28]
M. Mehrabi, A. Ulsoy, Y. Koren, Reconfigurable manufacturing systems: key to future manufacturing, Journal of Intelligent Manufacturing 2000/11 (2000), 403-419.
DOI: 10.1023/a:1008930403506
Google Scholar
[29]
A. Deif, W. EIMaraghy, A Control Approach to Explore the Dynamics of Capacity Scalability in Reconfigurable Manufacturing Systems, Journal of Manufacturing Systems 25/1 (2006) 12-24.
DOI: 10.1016/s0278-6125(07)00003-9
Google Scholar
[30]
R. Galan, J. Racero, I. Eguia, D. Canca, A methodology for facilitating reconfiguration in manufacturing: the move towards reconfigurable manufacturing systems, Int. J. for Advanced Technology 33 (2007) 345-353.
DOI: 10.1007/s00170-006-0461-2
Google Scholar
[31]
M. Landherr, E. Westkämper, Integrated Product and Assembly Configuration Using Systematic Modularization and Flexible Integration , Procedia CIRP 17 (2014) 260-265.
DOI: 10.1016/j.procir.2014.01.036
Google Scholar
[32]
S. Brad, A. Chioreanu, M. Fulea, B. Mocan, E. Brad, Reconfigurability Function Deployment in Software Development, Informatica Economică 14/1 (2010) 130-141.
Google Scholar
[33]
I. Abdesselam, H. Haffaf, Hypergraph Reconfigurability Analysis, IERI Procedia 6 (2014) 22-32.
DOI: 10.1016/j.ieri.2014.03.005
Google Scholar
[34]
C. Sharma, A. Sarvi, A. Alzahrani, R. DeMara, Self-healing reconfigurable logic using autonomous group testing, Microprocessors and Microsystems 37 (2013) 174-184.
DOI: 10.1016/j.micpro.2012.09.009
Google Scholar
[35]
J. Richter, W. Heemels, N. van de Wouw, J. Lunze, Reconfigurable control of piecewise affine systems with actuator and sensor faults: Stability and tracking, Automatica 47 (2011) 678-691.
DOI: 10.1016/j.automatica.2011.01.048
Google Scholar
[36]
N. Wu, S. Thavamania, Y. Zhang, M. Blanke, Sensor fault masking of a ship propulsion system, Control Engineering Practice 14 (2006) 1337-1345.
DOI: 10.1016/j.conengprac.2005.09.003
Google Scholar
[37]
J. Huang, N. Wu, Fault-tolerant placement of phasor measurement units based on control reconfigurability, Control Engineering Practice 21 (2013) 1-11.
DOI: 10.1016/j.conengprac.2012.09.001
Google Scholar
[38]
N. Wu, K, Zhou, G. Salomon, Control reconfigurability of linear time-invariant systems , Automatica 36 (2000) 1767-1771.
DOI: 10.1016/s0005-1098(00)00080-7
Google Scholar
[39]
A. Gehin, H. Hu, M. Bayart , A self-updating model for analysing system reconfigurability , Engineering Applications of Artificial Intelligence 25 (2012) 20-30.
DOI: 10.1016/j.engappai.2011.08.001
Google Scholar
[40]
R. De Prisco, A. De Santis, Catastrophic faults in reconfigurable systolic linear arrays, Discrete Applied Mathematics 75 (1997) 105-123.
DOI: 10.1016/s0166-218x(96)00090-x
Google Scholar
[41]
J. Lunze, J. Richter , Reconfigurable Fault-tolerant Control: A Tutorial Introduction , European Journal of Control 5 (2008) 359-386.
DOI: 10.3166/ejc.14.359-386
Google Scholar
[42]
T. Tolio, A. Valente, An Approach to Design the Flexibility Degree in Flexible Manufacturing Systems, 16th Int. Conf. on Flexible Automation and Intelligent Manufacturing (2006) 1229-1236.
Google Scholar
[43]
European Robotics Research Network, http: /www. euron. org.
Google Scholar
[44]
T. de Groot, O. Krasnov, A. Yarovoy , Gradient-based optimization algorithms for networks of reconfigurable sensors , Control Engineering Practice 29 (2014) 74-85.
DOI: 10.1016/j.conengprac.2014.04.007
Google Scholar
[45]
J. Mun, K. Ryu, M. Jung, Self-reconfigurable software architecture: Design and implementation, Computers & Industrial Engineering 51 (2006) 163-173.
DOI: 10.1016/j.cie.2006.07.008
Google Scholar
[46]
M. Edwards, L. Jozwiak, Special-issue on reconfigurable systems, Journal of Systems Architecture, 49/4 (2003) 123–125.
Google Scholar
[47]
W. Yao, F. Cannella, J. Dai , Automatic folding of cartons using a reconfigurable robotic system , Robotics and Computer-Integrated Manufacturing 27 (2011) 604-613.
DOI: 10.1016/j.rcim.2010.10.007
Google Scholar
[48]
I. Niroomand, O. Kuzgunkaya, A. Bulgak, The effect of system configuration and ramp-up time on manufacturing system acquisition under uncertain demand, Computers & Industrial Engineering 73 (2014) 61-74.
DOI: 10.1016/j.cie.2014.04.017
Google Scholar
[49]
Z. ul-Abdin, B. Svensson, Evolution in architectures and programming methodologies of coarse-grained reconfigurable computing, Microprocessors and Microsystems 33 (2009) 161-178.
DOI: 10.1016/j.micpro.2008.10.003
Google Scholar
[50]
R. Qiu, G. Tang, S. Joshi, A process-driven computing model for reconfigurable semiconductor manufacturing, Robotics and Computer-Integrated Manufacturing 24 (2008) 709-721.
DOI: 10.1016/j.rcim.2008.03.017
Google Scholar
[51]
H. ElMaraghy, G. Schuh, W. ElMaraghy, F. Piller, P. Schonsleben, M. Tseng, A. Bernard, Product variety management, CIRP Annals - Manufacturing Technology 62 (2013) 629-652.
DOI: 10.1016/j.cirp.2013.05.007
Google Scholar
[52]
M. Bruccoleri, Reconfigurable control of robotized manufacturing cells, Robotics and Computer-Integrated Manufacturing, 23/1 (2007) 94-106.
DOI: 10.1016/j.rcim.2005.08.005
Google Scholar
[53]
I. Chen, Rapid response manufacturing through a rapidly reconfigurable robotic workcell , Robotics and Computer Integrated Manufacturing 17 (2001) 199-213.
DOI: 10.1016/s0736-5845(00)00028-4
Google Scholar
[54]
I. Chen, A Rapidly Reconfigurable Robotics Workcell and Its Applications for Tissue Engineering, Report: Innovation in Manufacturing Systems and Technology (IMST) (2003).
Google Scholar
[55]
A. Farid, Facilitating ease of system reconfiguration through measures of manufacturing modularity. Journal of Engineering Manufacture 222/10 (2008) 1275-1288.
DOI: 10.1243/09544054jem1055
Google Scholar
[56]
F. Karl, G. Reinhart, M. Zaeh , Strategic Planning of Reconfigurations on Manufacturing Resources , Procedia CIRP 3 (2012) 608-613.
DOI: 10.1016/j.procir.2012.07.104
Google Scholar
[57]
K. Gumasta, S. Gupta, L. Benyoucef, M. Tiwari, Developing a reconfigurability index using multi-attribute utility theory, International Journal of Production Research 49/6 (2011) 1669–1683.
DOI: 10.1080/00207540903555536
Google Scholar