A Literature Survey on Reconfigurable Industrial Robotic Work Cells

Article Preview

Abstract:

As the unpredictability of market needs and the mass customization trends increase, employing reconfigurable industrial robotic work cells becomes a viable solution for manufacturers. A reconfigurable manufacturing system is a system designed for a quick change in structure, both in hardware and software, in order to rapidly adjust production capacity and functionalities. However, the approach is quite general; a simple search within scientific literature, patent databases or the world-wide-web returns thousands of results, covering a time period from the 80s to date. Among the results, different approaches on reconfigurable industrial robotic work cell implementations can be easily noticed. This paper surveys the literature in reconfigurable industrial robotic work cells, aiming to identify, besides the most important approaches on this topic, also performance criteria associated to robotic workcell reconfigurability and means of measuring the reconfigurability degree of such cells. The survey also aims to identify command and control architectures used to achieve various levels of reconfigurability. The survey was conducted by using a specific search methodology, which is also presented in the paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

233-241

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Hasan, P.K. Jain, D. Kumar, Service Level as Performance Index for Reconfigurable Manufacturing System Involving Multiple Part Families, Procedia Engineering 69 (2014) 814-821.

DOI: 10.1016/j.proeng.2014.03.058

Google Scholar

[2] H. Wiendahl, H. ElMaraghy, P. Nyhuis, M. Zäh, H. Wiendahl, N. Duffie, M. Brieke, Changeable Manufacturing - Classification, Design and Operation, Annals of CIRP Vol. 56/2 (2007) 783-809.

DOI: 10.1016/j.cirp.2007.10.003

Google Scholar

[3] A. Siddiqi, O. de Weck , Reconfigurability in planetary surface vehicles , Acta Astronautica 64 (2009) 589-601.

DOI: 10.1016/j.actaastro.2008.10.010

Google Scholar

[4] Definition of Reconfigurability, http: /en. wikipedia. org/wiki/Reconfigurability.

Google Scholar

[5] What is Reconfigurability, http: /www. igi-global. com/dictionary/reconfigurability/24734.

Google Scholar

[6] O. Makinde, K. Mpofu, Review of the Status of Reconfigurable Manufacturing Systems Application in South Africa Mining Machinery Industries, Procedia CIRP 17 (2014) 136-141.

DOI: 10.1016/j.procir.2014.02.035

Google Scholar

[7] M. Hedelind, On Reconfigurable Robotic Working Cells – a Case Study, Technical Report, School if Innovation, Design and Engineering, Mälardalen University, Sweeden (2008).

Google Scholar

[8] F. Hasan, P.K. Jain, D. Kumar, Machine Reconfigurability Models Using Multi-Attribute Utility Theory and Power Function Approximation, Procedia Engineering 64 (2013) 1354-1363.

DOI: 10.1016/j.proeng.2013.09.217

Google Scholar

[9] Y. Koren, U. Heisel, F. Joveane, T. Morwaki, G. Pritschow, G. Ulsoy, H. Van Brussel, Reconfigurable manufacturing systems, CIRP Ann., 48/2 (1999) 527–541.

DOI: 10.1016/s0007-8506(07)63232-6

Google Scholar

[10] K.K. Goyal, P.K. Jain, M. Jain, A novel methodology to measure the responsiveness of RMTs in reconfigurable manufacturing system, Journal of Manufacturing Systems 32 (2013) 724-730.

DOI: 10.1016/j.jmsy.2013.05.002

Google Scholar

[11] I. Chalfoun, K. Kouiss, A.L. Huyet, N. Bouton, Proposal for a Generic Model Dedicated to Reconfigurable and Agile Manufacturing Systems (RAMS), Procedia CIRP 7 (2013) 485-490.

DOI: 10.1016/j.procir.2013.06.020

Google Scholar

[12] J. Li, M. Zhou, T. Guo, Y. Gan, X. Dai , Robust control reconfiguration of resource allocation systems with Petri nets and integer programming , Automatica 50 (2014) 915-923.

DOI: 10.1016/j.automatica.2013.12.015

Google Scholar

[13] I. Chalfoun, K. Kouiss, N. Bouton, P. Ray, Characterization of a Reconfigurable and Agile Manufacturing System (RAMS), 14th International Conference on Modern Information Technology in the Innovation Processes of the Industrial Enterprises, Hungary (2012).

Google Scholar

[14] C. Canal, J. Cámara, G. Salaün, Structural reconfiguration of systems under behavioral adaptation , Science of Computer Programming 78 (2012) 46-64.

DOI: 10.1016/j.scico.2011.09.003

Google Scholar

[15] N. Medvidovic, ADLs and dynamic architecture changes, SIGSOFT 96 Workshop, ACM (1996) 24-27.

Google Scholar

[16] R. Setchi, N. Lagos, Reconfigurability and reconfigurable manufacturing systems – state of the art review, IEEE Conference on Industrial Informatics, INDIN'04, Berlin, June 24-27 (2004) 529-535.

DOI: 10.1109/indin.2004.1417401

Google Scholar

[17] A. Al-Zaher, W. ElMaraghy, Design Method of Under-Body Platform Automotive Framing Systems , Procedia CIRP 17 (2014) 380-385.

DOI: 10.1016/j.procir.2014.03.116

Google Scholar

[18] K.K. Mittal, P.K. Jain, An Overview of Performance Measures in Reconfigurable Manufacturing System , Procedia Engineering 69 (2014) 1125-1129.

DOI: 10.1016/j.proeng.2014.03.100

Google Scholar

[19] J. Padayachee, G. Bright , Modular machine tools: Design and barriers to industrial implementation , Journal of Manufacturing Systems 31 (2012) 92-5.

DOI: 10.1016/j.jmsy.2011.10.003

Google Scholar

[20] X. Meng, Modeling of reconfigurable manufacturing systems based on colored timed object-oriented Petri nets , Journal of Manufacturing Systems 29 (2010) 81-90.

DOI: 10.1016/j.jmsy.2010.11.002

Google Scholar

[21] G. Putnik, A. Sluga, H. ElMaraghy, R. Teti, Y. Koren, T. Tolio, B. Hon, Scalability in manufacturing systems design and operation: State-of-the-art and future developments roadmap, CIRP Annals - Manufacturing Technology 62 (2013) 751-774.

DOI: 10.1016/j.cirp.2013.05.002

Google Scholar

[22] A. Al-Zaher, W. ElMaraghy, Design of reconfigurable automotive framing system, CIRP Annals - Manufacturing Technology 62 (2013) 491-494.

DOI: 10.1016/j.cirp.2013.03.116

Google Scholar

[23] A. Siddiqi, O. de Weck, Modeling Methods and Conceptual Design Principles for Reconfigurable Systems, Journal of Mechanical Design 130 (2008) 45–4111.

DOI: 10.1115/1.2965598

Google Scholar

[24] G. Lee, Reconfigurability Consideration Design of Components and Manufacturing Systems, Int. J. Adv. Manuf. Technol. 13 (1997) 376-386.

DOI: 10.1007/bf01178258

Google Scholar

[25] A. Farid, D. McFarlane, A Design Structure Matrix Based Method for Reconfigurability Measurement of Distributed Manufacturing Systems, Int. J. of Intelligent Control and Systems 12/2 (2007) 118-129.

Google Scholar

[26] E. Marsillac, J. Roh, Connecting product design, process and supply chain decisions to strengthen global supply chain capabilities, Int. J. Production Economics 147 (2014) 317-329.

DOI: 10.1016/j.ijpe.2013.04.011

Google Scholar

[27] A. Aguilar, A. Roman-Flores, J. Huegel, Design, refinement, implementation and prototype testing of a reconfigurable lathe-mill, Journal of Manufacturing Systems 32 (2013) 364-371.

DOI: 10.1016/j.jmsy.2013.01.003

Google Scholar

[28] M. Mehrabi, A. Ulsoy, Y. Koren, Reconfigurable manufacturing systems: key to future manufacturing, Journal of Intelligent Manufacturing 2000/11 (2000), 403-419.

DOI: 10.1023/a:1008930403506

Google Scholar

[29] A. Deif, W. EIMaraghy, A Control Approach to Explore the Dynamics of Capacity Scalability in Reconfigurable Manufacturing Systems, Journal of Manufacturing Systems 25/1 (2006) 12-24.

DOI: 10.1016/s0278-6125(07)00003-9

Google Scholar

[30] R. Galan, J. Racero, I. Eguia, D. Canca, A methodology for facilitating reconfiguration in manufacturing: the move towards reconfigurable manufacturing systems, Int. J. for Advanced Technology 33 (2007) 345-353.

DOI: 10.1007/s00170-006-0461-2

Google Scholar

[31] M. Landherr, E. Westkämper, Integrated Product and Assembly Configuration Using Systematic Modularization and Flexible Integration , Procedia CIRP 17 (2014) 260-265.

DOI: 10.1016/j.procir.2014.01.036

Google Scholar

[32] S. Brad, A. Chioreanu, M. Fulea, B. Mocan, E. Brad, Reconfigurability Function Deployment in Software Development, Informatica Economică 14/1 (2010) 130-141.

Google Scholar

[33] I. Abdesselam, H. Haffaf, Hypergraph Reconfigurability Analysis, IERI Procedia 6 (2014) 22-32.

DOI: 10.1016/j.ieri.2014.03.005

Google Scholar

[34] C. Sharma, A. Sarvi, A. Alzahrani, R. DeMara, Self-healing reconfigurable logic using autonomous group testing, Microprocessors and Microsystems 37 (2013) 174-184.

DOI: 10.1016/j.micpro.2012.09.009

Google Scholar

[35] J. Richter, W. Heemels, N. van de Wouw, J. Lunze, Reconfigurable control of piecewise affine systems with actuator and sensor faults: Stability and tracking, Automatica 47 (2011) 678-691.

DOI: 10.1016/j.automatica.2011.01.048

Google Scholar

[36] N. Wu, S. Thavamania, Y. Zhang, M. Blanke, Sensor fault masking of a ship propulsion system, Control Engineering Practice 14 (2006) 1337-1345.

DOI: 10.1016/j.conengprac.2005.09.003

Google Scholar

[37] J. Huang, N. Wu, Fault-tolerant placement of phasor measurement units based on control reconfigurability, Control Engineering Practice 21 (2013) 1-11.

DOI: 10.1016/j.conengprac.2012.09.001

Google Scholar

[38] N. Wu, K, Zhou, G. Salomon, Control reconfigurability of linear time-invariant systems , Automatica 36 (2000) 1767-1771.

DOI: 10.1016/s0005-1098(00)00080-7

Google Scholar

[39] A. Gehin, H. Hu, M. Bayart , A self-updating model for analysing system reconfigurability , Engineering Applications of Artificial Intelligence 25 (2012) 20-30.

DOI: 10.1016/j.engappai.2011.08.001

Google Scholar

[40] R. De Prisco, A. De Santis, Catastrophic faults in reconfigurable systolic linear arrays, Discrete Applied Mathematics 75 (1997) 105-123.

DOI: 10.1016/s0166-218x(96)00090-x

Google Scholar

[41] J. Lunze, J. Richter , Reconfigurable Fault-tolerant Control: A Tutorial Introduction , European Journal of Control 5 (2008) 359-386.

DOI: 10.3166/ejc.14.359-386

Google Scholar

[42] T. Tolio, A. Valente, An Approach to Design the Flexibility Degree in Flexible Manufacturing Systems, 16th Int. Conf. on Flexible Automation and Intelligent Manufacturing (2006) 1229-1236.

Google Scholar

[43] European Robotics Research Network, http: /www. euron. org.

Google Scholar

[44] T. de Groot, O. Krasnov, A. Yarovoy , Gradient-based optimization algorithms for networks of reconfigurable sensors , Control Engineering Practice 29 (2014) 74-85.

DOI: 10.1016/j.conengprac.2014.04.007

Google Scholar

[45] J. Mun, K. Ryu, M. Jung, Self-reconfigurable software architecture: Design and implementation, Computers & Industrial Engineering 51 (2006) 163-173.

DOI: 10.1016/j.cie.2006.07.008

Google Scholar

[46] M. Edwards, L. Jozwiak, Special-issue on reconfigurable systems, Journal of Systems Architecture, 49/4 (2003) 123–125.

Google Scholar

[47] W. Yao, F. Cannella, J. Dai , Automatic folding of cartons using a reconfigurable robotic system , Robotics and Computer-Integrated Manufacturing 27 (2011) 604-613.

DOI: 10.1016/j.rcim.2010.10.007

Google Scholar

[48] I. Niroomand, O. Kuzgunkaya, A. Bulgak, The effect of system configuration and ramp-up time on manufacturing system acquisition under uncertain demand, Computers & Industrial Engineering 73 (2014) 61-74.

DOI: 10.1016/j.cie.2014.04.017

Google Scholar

[49] Z. ul-Abdin, B. Svensson, Evolution in architectures and programming methodologies of coarse-grained reconfigurable computing, Microprocessors and Microsystems 33 (2009) 161-178.

DOI: 10.1016/j.micpro.2008.10.003

Google Scholar

[50] R. Qiu, G. Tang, S. Joshi, A process-driven computing model for reconfigurable semiconductor manufacturing, Robotics and Computer-Integrated Manufacturing 24 (2008) 709-721.

DOI: 10.1016/j.rcim.2008.03.017

Google Scholar

[51] H. ElMaraghy, G. Schuh, W. ElMaraghy, F. Piller, P. Schonsleben, M. Tseng, A. Bernard, Product variety management, CIRP Annals - Manufacturing Technology 62 (2013) 629-652.

DOI: 10.1016/j.cirp.2013.05.007

Google Scholar

[52] M. Bruccoleri, Reconfigurable control of robotized manufacturing cells, Robotics and Computer-Integrated Manufacturing, 23/1 (2007) 94-106.

DOI: 10.1016/j.rcim.2005.08.005

Google Scholar

[53] I. Chen, Rapid response manufacturing through a rapidly reconfigurable robotic workcell , Robotics and Computer Integrated Manufacturing 17 (2001) 199-213.

DOI: 10.1016/s0736-5845(00)00028-4

Google Scholar

[54] I. Chen, A Rapidly Reconfigurable Robotics Workcell and Its Applications for Tissue Engineering, Report: Innovation in Manufacturing Systems and Technology (IMST) (2003).

Google Scholar

[55] A. Farid, Facilitating ease of system reconfiguration through measures of manufacturing modularity. Journal of Engineering Manufacture 222/10 (2008) 1275-1288.

DOI: 10.1243/09544054jem1055

Google Scholar

[56] F. Karl, G. Reinhart, M. Zaeh , Strategic Planning of Reconfigurations on Manufacturing Resources , Procedia CIRP 3 (2012) 608-613.

DOI: 10.1016/j.procir.2012.07.104

Google Scholar

[57] K. Gumasta, S. Gupta, L. Benyoucef, M. Tiwari, Developing a reconfigurability index using multi-attribute utility theory, International Journal of Production Research 49/6 (2011) 1669–1683.

DOI: 10.1080/00207540903555536

Google Scholar