[1]
C. C. E. Abreu, F. R. Chavarette, F. V. Alvarado, M. A. Q. Duarte and F. P. A. Lima, Dual-Tree Complex Wavelet Transform Applied to Fault Monitoring and Identification in Aeronautical Structures, International Journal of Pure and Applied Mathematics, vol. 97, pp.89-97, (2014).
DOI: 10.12732/ijpam.v97i1.9
Google Scholar
[2]
G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynold and D. B. Rosen, Fuzzy ARTMAP: A neural network for incremental supervised learning of analog multidimensional maps, IEEE Transactions on Neural Network, vol. 3, n. 5, pp.689-713, (1992).
DOI: 10.1109/72.159059
Google Scholar
[3]
G. A. Carpenter and S. Grossberg, A massively parallel architecture for a self-organizing neural pattern recognition machine, Computer Vision, Graphics, and Image Processing, pp.54-115, (1987).
DOI: 10.1016/s0734-189x(87)80014-2
Google Scholar
[4]
M. Chandrashekhar and R. Ganguli, Structural damage detection using modal curvature and fuzzy logic, Structural Health Monitoring, vol. 8, pp.267-282, (2009).
DOI: 10.1177/1475921708102088
Google Scholar
[5]
S. R. Hall, The effective management and use of structural health data, International Workshop on Structural Health Monitoring, pp.265-275, (1999).
Google Scholar
[6]
S. H. Haykin, Neural Networks: A comprehensive foundation, MacMilliam College Publishing, New York, (1994).
Google Scholar
[7]
F. P. A. Lima, F. R. Chavarette, A. S. Souza, S. S. F. Souza and M. L. M. Lopes, Artificial Immune Systems with Negative Selection Applied to Health Monitoring of Aeronautical Structures, Advanced Materials Research, vol. 871, pp.283-289, (2013).
DOI: 10.4028/www.scientific.net/amr.871.283
Google Scholar
[8]
F. P. A. Lima, F. R. Chavarette, S. S. F. Souza, A. S. Souza and M. L. M. Lopes, Artificial Immune Systems Applied to the Analysis of Structural Integrity of a Building, Applied Mechanics and Materials, vol. 472, pp.544-549, (2014).
DOI: 10.4028/www.scientific.net/amm.472.544
Google Scholar
[9]
F. P. A. Lima, F. R. Chavarette, S. S. F. Souza, A. S. Souza and M. L. M. Lopes, A Comparison of Methodologies for Intelligent Computing Used to Integrity Analysis of a Structure Aeronautic, Applied Mechanics and Materials, vol. 610, pp.253-257, (2014).
DOI: 10.4028/www.scientific.net/amm.610.253
Google Scholar
[10]
F. P. A. Lima, F. R. Chavarette, S. S. F. Souza, M. L. M. Lopes, A. E. Turra and V. Lopes Jr., Analysis of Structural Integrity of a Building Using an Artificial Neural Network ARTMAP-Fuzzy-Wavelet, Advanced Materials Research, vol. 1025-1026, pp.1113-1118, (2014).
DOI: 10.4028/www.scientific.net/amr.1025-1026.1113
Google Scholar
[11]
F. P. A. Lima, F. R. Chavarette, S. S. F. Souza, M. L. M. Lopes, A. E. Turra and V. Lopes Jr., Monitoring and Fault Identification in Aeronautical Structures Using an ARTMAP-Fuzzy-Wavelet Artificial Neural Network, Advanced Materials Research, vol. 1025-1026, pp.1107-1112, (2014).
DOI: 10.4028/www.scientific.net/amr.1025-1026.1107
Google Scholar
[12]
A. S. Souza, F. R. Chavarette, F. P. A. Lima, M. L. M. Lopes and S. S. F. Souza, Analysis of Structural Integrity Using an ARTMAP-Fuzzy Artificial Neural Network, Advanced Materials Research, vol. 838-841, pp.3287-3290, (2013).
DOI: 10.4028/www.scientific.net/amr.838-841.3287
Google Scholar
[13]
Matlab (2011), 7. 8 Version, Mathworks Company.
Google Scholar
[14]
F. L. Wang, T. H. T. Chan, D. P. Thambiratnam and A. C. C. Tan, Damage Diagnosis for Complex Steel Truss Bridges Using Multi-Layer Genetic Algorithm, Journal of Civil structural Health Monitoring, Springer-Verlag, p.117–217, (2013).
DOI: 10.1007/s13349-013-0041-8
Google Scholar
[15]
P. J. Werbos, Beyond regression: New tools for prediction and analysis in the behavioral sciences, PhD. Thesis, Harvard University, (1974).
Google Scholar