Review of Single Cycle Shifter for Structured LDPC Encoder

Article Preview

Abstract:

Shifter has been used in encoder of structured low density parity check (LDPC) codes due to the nature of its structure. Single clock cycle time of shifter is selected for doing matrix-vector multiplication of LDPC encoding to minimize encoding latency. Among the shifters which complete the multiplication within one clock cycle, this paper suggests the cyclic shifter for structured LDPC encoder. It is shown that the implementation of the typical cyclic shifter has less logic gates and less bit controller than the other shifter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

189-194

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems, (IEEE Std. 802. 16-2009 −Revision of IEEE Std. 802. 16-2004, 2009), p.1–(2080).

DOI: 10.1109/ieeestd.2009.5062485

Google Scholar

[2] IEEE Standard for Information technology–Telecommunications and information exchange between systems Local and metropolitan area networks–Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, (IEEE 802. 11n, 2009) p.1.

DOI: 10.1109/ieeestd.2007.373646

Google Scholar

[3] IEEE Standard 802. 22, (2011).

Google Scholar

[4] IEEE 802. 11acTM/D2. 0, Draft Standard for Information Technology Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz, Jan. (2012).

DOI: 10.1109/ieeestd.2013.6687187

Google Scholar

[5] International Telecommunication Union: ITU-T G9960, (2011).

Google Scholar

[6] H. Zhong and T. Zang, Block-LDPC: A Practical LDPC Coding System Design Approach, (IEEE Trans. on Circuits and Systems I: Regular Papers, 2005), Vol. 52, No. 4, pp.766-765.

DOI: 10.1109/tcsi.2005.844113

Google Scholar

[7] S. Kopparthi and D. M. Gruenbacher: Implementation of a Flexible Encoder for Structured Low-Density Parity-Check Codes, (IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 2007) pp.438-441.

DOI: 10.1109/pacrim.2007.4313268

Google Scholar

[8] J. K. Kim, H. Yoo and M. H. Lee: Efficient Encoding Architecture for IEEE 802. 16e LDPC Codes, (IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Dec. 2008), Vol. E91-A, pp.3607-3611.

DOI: 10.1093/ietfec/e91-a.12.3607

Google Scholar

[9] Zongwang Li, Lei Chen, Lingqi Zeng, Shu Lin and Wai H. Fong: Efficient Encoding of Quasi-Cyclic Low Density Parity Check Codes, (IEEE Transactions on Communications, January 2006), Vol. 54, No. 1, pp.71-81.

DOI: 10.1109/glocom.2005.1577844

Google Scholar

[10] Z. Cai, J. Hao, P. Tan, S. Sun, and P. S. Chin: Efficient encoding of IEEE 802. 11n LDPC codes, (Electronics Letters, 2006), Vol. 42, No. 25, p.1471–1472.

DOI: 10.1049/el:20063126

Google Scholar

[11] J. Perez and V. Fernandez: Low-cost encoding of IEEE 802. 11n, (Electronics Letters, 2008), Vol. 44, No. 4, p.307–308.

Google Scholar

[12] Y. Jung, Y. Jung, and J. Kim: Memory-efficient and high-speed LDPC encoder, (Electronics Letters, 2010), Vol. 46, No. 14, p.1035–1036.

DOI: 10.1049/el.2010.1189

Google Scholar

[13] Chia-Yu Lin, Chih-Chun Wei and Mong-Kai Ku: Two-way parity bit correction encoding algorithm for dual-diagonal LDPC codes, (IEICE Transactions on Fundamentals of Electronics, Comm. and Computer Sciences, February 2011), Vol. E94-A, pp.773-780.

DOI: 10.1587/transfun.e94.a.773

Google Scholar

[14] Matthew Rudolf Pillmeier: Barrel Design, Optimization, and Analysis, M. Sc Thesis, (2002).

Google Scholar

[15] Yongmin Jung, Chulho Chung, Jaeseok Kim, Yunho Jung: 7. 7 Gbps encoder design for IEEE 802. 11n/ac QC-LDPC codes, (International SoC Design Conference, Korea 2012).

DOI: 10.1109/isocc.2012.6407078

Google Scholar

[16] Kiran Gunnam, U.S. Patent US 8352847 B2, (2013).

Google Scholar

[17] Daesun Oh and Keshab K. Parhi: Low-complexity switch network for reconfigurable LDPC decoders, (IEEE Trans. on VLSI Systems, 2010), Vol. 18, p.85−94, (2010).

DOI: 10.1109/tvlsi.2008.2007736

Google Scholar

[18] V. E. Benes: Optimal Rearrangeable Multistage Connecting Networks, (Bell System Technical Journal, 1964), Vol. 43, p.1641−1656.

DOI: 10.1002/j.1538-7305.1964.tb04103.x

Google Scholar

[19] G. Masera, F. Quaglio and F. Vacca: Implementation of a Flexible LDPC Decoder, (IEEE Trans. Circuits Sys. II, 2007), Vol. 54, p.542−546.

DOI: 10.1109/tcsii.2007.894409

Google Scholar

[20] Figure on http: /www. zmitac. aei. polsl. pl/Electronics_Firm_Docs/ATMEL/Atmel/acrobat/ doc0469. pdf.

Google Scholar