Resistive Switching Characteristics in Boron Doped Zinc Oxide Films

Article Preview

Abstract:

In this work, metal/oxide/metal capacitors were fabricated and investigated using transparent boron-doped zinc oxide (ZnO:B) films for nonvolatile memory applications. Both top and bottom electrodes are tungsten. The average value of transmittance of ZnO:B films grown on silicon substrates is found to be about 91% in the visible light region. According to the relationship between transmittance and wavelength, the optical band gap of ZnO:B films is determined to be about 3.26 eV. The temperature dependent current-voltage curves show that the current density increases with increasing temperature in low-resistance state (LRS), meanwhile, the current density decreases with increasing temperature in high-resistance state (HRS). From the resistive switching behavior of the W/ZnO:B/W memory devices, the reset voltage which triggers the memory devices from an LRS to an HRS is independent of temperature. On the other hand, the set voltage which triggers the memory devices from an HRS to an LRS is increased with temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-91

Citation:

Online since:

May 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakjyarma, Y. Wang, S. Q. Liu, N. J. Wu and A. Ignatiev: Novell colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM), " in Proceedings of the 48th IEEE International Electron Devices Meeting (IEDM , 02), pp.193-196, (2002).

DOI: 10.1109/iedm.2002.1175811

Google Scholar

[2] H. Akinaga and H. Shima: Resistive random access memory (ReRAM) based on metal oxides, Proceedings of the IEEE, vol. 98, no. 12, pp.2237-2251, Dec. (2010).

DOI: 10.1109/jproc.2010.2070830

Google Scholar

[3] A. Sawa: Resistive switching in transition metal, Materials Today, vol. 11, no. 6, pp.28-36, Jun. (2008).

Google Scholar

[4] R. Waser, R. Dittmann, G. Staikov and K. Szot: Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges, Advanced Materials, vol. 21, no. 25-26, pp.2632-2663, Jun. (2009).

DOI: 10.1002/adma.200900375

Google Scholar

[5] C. C. Lin, C. Y. Lin, M. H. Lin, C. H. Lin and T. Y. Tseng: Voltage-polarity-independent and high-speed resistive switching properties of V-doped SrZrO3 thin films, IEEE Trans. Electron Devices, vol. 54, no. 12, pp.3146-3151, Dec. (2007).

DOI: 10.1109/ted.2007.908867

Google Scholar

[6] D. Ielmini, F. Nardi and C. Cagli: Universal reset characteristics of unipolar and bipolar metal-oxide RRAM, IEEE Trans. Electron Devices, vol. 58, no. 10, pp.3246-3253, Oct. (2011).

DOI: 10.1109/ted.2011.2161088

Google Scholar

[7] M. Colle, M. Buchel and D. M. de Leeuw: Switching and filamentary conduction in non-volatile organic memories, Organic Electronics, vol. 7, no. 5, pp.305-312, Oct. (2006).

DOI: 10.1016/j.orgel.2006.03.014

Google Scholar

[8] R. Müller, C. Krebs, L. Goux, D. J. Wouters, J. Genoe, P. Heremans, S. Spiga and M. Fanciulli: Bipolar resistive electrical switching of CuTCNQ memories incorporating a dedicated switching layer, IEEE Electron Device Lett., Vol. 30, No. 6, pp.620-622, Jun. (2009).

DOI: 10.1109/led.2009.2020521

Google Scholar

[9] S. H. Jo, K. H. Kim and W. Lu: Programmable resistance switching in nanoscale two-terminal devices, Nano Lett., vol. 9, no. 1, pp.496-500, Jan. (2009).

DOI: 10.1021/nl803669s

Google Scholar

[10] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung and J. T. Moon: Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses, " in Proceedings of the 50th IEEE International Electron Devices Meeting (IEDM , 04), pp.587-590, (2004).

DOI: 10.1109/iedm.2004.1419228

Google Scholar

[11] A. Umar: Growth of comb-like ZnO nanostructures for dye-sensitized solar cells applications, Nanoscale Res. Lett., Vol. 4, No. 9, pp.1004-1008, Sep. (2009).

DOI: 10.1007/s11671-009-9353-3

Google Scholar

[12] M. Moya, A. P. Samantilleke, M Mollar and B. Mari, Nanostructured hybrid ZnO thin films for energy conversion, Nanoscale Res. Lett., Vol. 6, Article ID 384, May (2011).

DOI: 10.1186/1556-276x-6-384

Google Scholar

[13] H. Morkoc and U. Ozgur: Zinc Oxide: Fundaments, Materials and Device Technology, Berlin: Wiley-VCH; (2009).

Google Scholar

[14] P. Prunici, F. U. Hamelmann, W. Beyer, H. Kurz and H. Stiebig: Modelling of infrared optical constants for polycrystalline low pressure chemical vapour deposition ZnO: B films, J. Appl. Phys., Vol. 113, No. 12, p.123104, Mar. (2013).

DOI: 10.1063/1.4795809

Google Scholar

[15] M. Villafuerte, S. P. Heluani, G. Juárez, G. Simonelli, G. Braunstein and S. Duhalde: Electric-pulse-induced reversible resistance in doped zinc oxide thin films, Appl. Phys. Lett., vol. 90, no. 5, Article ID 052105, 3 pages, Jan. (2007).

DOI: 10.1063/1.2437688

Google Scholar

[16] W.Y. Chang, Y.C. Lai, T.B. Wu, S.F. Wang, F. Chen and M.J. Tsai: Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications, Appl. Phys. Lett., vol. 92, no. 2, p.022110, Jan. (2008).

DOI: 10.1063/1.2834852

Google Scholar

[17] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang and B. Yu: Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories, Appl. Phys. Lett., vol. 92, no. 23, Article ID 232112, 3 pages, May (2008).

DOI: 10.1063/1.2945278

Google Scholar

[18] S. Kim, H. Moon, D. Gupta, S. Yoo and Y. K. Choi: Resistive switching characteristics of sol–gel zinc oxide films for flexible memory applications, IEEE Trans. Electron Devices, vol. 56, no. 4, pp.696-699, Apr. (2009).

DOI: 10.1109/ted.2009.2012522

Google Scholar

[19] Y. Zhang and C.T. Lee: Negative differential resistance in ZnO nanowires bridging two metallic electrodes, Nanoscale Res. Lett., vol. 5, pp.1492-1495, Jun. (2010).

DOI: 10.1007/s11671-010-9667-1

Google Scholar

[20] M. C. Chen, T. C. Chang, S. Y. Huang, S. C. Chen, C. W. Hu, C. T. Tsai and S. M. Sze: Bipolar resistive switching characteristics of transparent indium gallium zinc oxide resistive random access memory, Electrochem. Solid-State Lett., Vol. 13, No. 6, pp. H191-H193, (2010).

DOI: 10.1149/1.3360181

Google Scholar

[21] C. H. Kim, Y. H. Jang, H. J. Hwang, C. H. Song, Y. S. Yang and J. H. Cho: Bistable resistance memory switching effect in amorphous InGaZnO thin films, Appl. Phys. Lett., vol. 97, no. 6, p.062109, Aug. (2010).

DOI: 10.1063/1.3479527

Google Scholar

[22] M. C. Chen, T. C. Chang, S. Y. Huang, G. C. Chang, S. C. Chen, H. C. Huang, C. W. Hu, S. M. Sze, T. M. Tsai, D. S. Gan, F. S. Yeh and M. J. Tsai: Influence of oxygen partial pressure on resistance random access memory characteristics of indium gallium zinc oxide, Electrochem. Solid-State Lett., Vol. 14, No. 12, pp. H475-H477, (2011).

DOI: 10.1149/2.007112esl

Google Scholar

[23] T. Ratanaa, P. Amornpitoksuk, T. Ratana and S. Suwanboon: The wide band gap of highly oriented nanocrystalline Al doped ZnO thin films from sol-gel dip coating, Journal of Alloys and Compounds, Vol. 470, No. 1-2, p.408–412, Feb. (2009).

DOI: 10.1016/j.jallcom.2008.02.081

Google Scholar

[24] F. C. Chiu, W. C. Shih and J. J. Feng: Conduction mechanism of resistive switching films in MgO memory devices, J. Appl. Phys., vol. 111, no. 9, p.094104, May (2012).

DOI: 10.1063/1.4712628

Google Scholar