Supercritical CO2 Extraction of γ-Linolenic Acid from Spirulina platensis

Article Preview

Abstract:

Arthrospira (Spirulina) platensis contains large quantities of γ-linolenic acid (GLA). GLA is an essential omega-6 unsaturated fatty acid made in the human body from linoleic acid. It can be metabolized to various important eicosanoids such as prostaglandins, thromboxanes, leukotrienes, prostacyclins, and lipoxins. The aim of this study was to investigate the optimal extraction parameters of GLA from A. platensis using supercritical CO2 technology. Results showed that operating temperatures and pressures were important factors in the extraction of GLA. A maximum GLA yield of 161.98 μg/g could be obtained at a pressure of 30 MPa, a temperature of 60°C, and a CO2 flow rate of 6 mL/min. Conversely, only a yield of 104.16 μg/g could be obtained at a pressure of 10 MPa, a temperature of 40°C, and a CO2 flow rate of 6 mL/min. The correlation between pressure and yield could be explained by an increase in collision rates between CO2 molecules and carrier affinity under a high pressure. Therefore, an operating temperature between 50 and 60°C and a pressure of 30 MPa should be used to maximize the yield of GLA from A. platensis using supercritical CO2 technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

92-97

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Tapiero, G.N. Ba, P. Couvreur, K.D. Tew: Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed. Pharmacother. 56 (2002) 215-222.

DOI: 10.1016/s0753-3322(02)00193-2

Google Scholar

[2] O.P. Ward, A. Singh: Omega-3/6 fatty acids: Alternative sources of production. Process Biochem. 40 (2005) 3627-3652.

DOI: 10.1016/j.procbio.2005.02.020

Google Scholar

[3] L.D. Peterson, F. Thies, P.C. Calder: Dose-dependent effects of dietary γ-linolenic acid on rat spleen lymphocyte functions. Prostaglandins Leukot. Essent. Fatty Acids 61 (1999) 19-24.

DOI: 10.1054/plef.1999.0067

Google Scholar

[4] M.C. Kruger, H. Coetzer, R. de Winter, G. Gericke, D.H. van Papendorp, Calcium, gamma-linolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis. Aging 10 (1998) 385-394.

DOI: 10.1007/bf03339885

Google Scholar

[5] M. Brzeski, R. Madhok, H.A. Capell: Evening primrose oil in patients with rheumatoid arthritis and side-effects of non-steroidal anti-inflammatory drugs. Br. J. Rheumatol. 30 (1991) 370-372.

DOI: 10.1093/rheumatology/30.5.370

Google Scholar

[6] A. Kawamura, K. Ooyama, K. Kojima, H. Kachi, T. Abe, K. Amano, T. Aoyama: Dietary supplementation of gamma-linolenic acid improves skin parameters in subjects with dry skin and mild atopic dermatitis. J. Oleo. Sci. 60 (2011) 597-607.

DOI: 10.5650/jos.60.597

Google Scholar

[7] M. Ranieri, M. Sciuscio, A.M. Cortese, A. Santamato, L. Di Teo, G. Ianieri, R.G. Bellomo, M. Stasi, M. Megna: The use of alpha-lipoic acid (ALA), gamma linolenic acid (GLA) and rehabilitation in the treatment of back pain: effect on health-related quality of life. Int. J. Immunopathol. Pharmacol. 22 (2009).

DOI: 10.1177/03946320090220s309

Google Scholar

[8] A. Pontes-Arruda, L.F. Martins, S.M. de Lima, A.M. Isola, D. Toledo, E. Rezende, M. Maia, G.B. Magnan: Enteral nutrition with eicosapentaenoic acid, γ-linolenic acid and antioxidants in the early treatment of sepsis: results from a multicenter, prospective, randomized, double-blinded, controlled study: the INTERSEPT study. Crit. Care 15 (2011).

DOI: 10.1186/cc10267

Google Scholar

[9] D.F. Horrobin: The role of essential fatty acids and prostaglandins in the premenstrual syndrome. J. Reprod. Med. 28 (1983) 465-468.

Google Scholar

[10] M.T. Facciotti, P.B. Bertain, L. Yuan: Improved stearate phenotype in transgenic canola expressing a modified acyl-acyl carrier protein thioesterase. Nat. Biotechnol. 17 (1999) 593-597.

DOI: 10.1038/9909

Google Scholar

[11] J.L. Guil-Guerrero, F. Garcı́a-Maroto, M.A. Vilches-Ferrón, D. López-Alonso, Gamma-linolenic acid from fourteen Boraginaceae species. Ind. Crops and Prod. 18 (2003) 85-89.

DOI: 10.1016/s0926-6690(03)00036-0

Google Scholar

[12] S.A. Spurvey, F. Shahidi: Concentration of gamma linolenic acid (GLA) from borage oil by urea complexation: Optimisation of reaction conditions. J. Food Lipids 7 (2000) 163-174.

DOI: 10.1111/j.1745-4522.2000.tb00169.x

Google Scholar

[13] Y. Shimada, N. Fukushima, H. Fujita, Y. Honda, A. Sugihara, Y. Tominaga: Selective hydrolysis of borage oil with Candida rugosa lipase: Two factors affecting the reaction. J. Am. Oil Chem. Soc. 75 (1998) 1581-1586.

DOI: 10.1007/s11746-998-0097-5

Google Scholar

[14] M. Certik, S. Shimizu: Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J. Biosci. Bioeng. 87 (1999) 1-14.

DOI: 10.1016/s1389-1723(99)80001-2

Google Scholar

[15] Z. Cohen, M. Reungjitchachawali, W. Siangdung, M. Tanticharoen: Production and partial purification of γ-linolenic acid and some pigments from Spirulina platensis. J. Appl. Phycol. 5 (1993) 109-115.

DOI: 10.1007/bf02182428

Google Scholar

[16] M.G. Sajilata, R.S. Singhal, M.Y. Kamat: Supercritical CO2 extraction of γ-linolenic acid (GLA) from Spirulina platensis ARM 740 using response surface methodology. J. Food Eng. 84 (2008a) 321-326.

DOI: 10.1016/j.jfoodeng.2007.05.028

Google Scholar

[17] M.A. Borowitzka: Microalgae for aquaculture: Opportunities and constraints. J. Appl. Phycol. 9 (1997) 393-401.

Google Scholar

[18] G. Chamorro, S. Salazar, L. Favila-Castillo, C. Steele, M. Salazar: Reproductive and peri- and postnatal evaluation of Spirulina maxima in mice. J. Appl. Phycol. 9 (1997) 107-112.

DOI: 10.1016/s0378-4274(96)80242-6

Google Scholar

[19] M. Salazar, E. Martı́nez, E. Madrigal, L.E. Ruiz, G.A. Chamorro: Subchronic toxicity study in mice fed Spirulina maxima. J. Ethnopharmacol. 62 (1998) 235-241.

DOI: 10.1016/s0378-8741(98)00080-4

Google Scholar

[20] Y. Yang, Y. Park, D.A. Cassada, D.D. Snow, D.G. Rogers, J. Lee: In vitro and in vivo safety assessment of edible blue-green algae, Nostoc commune var. sphaeroides Kützing and Spirulina plantensis. Food Chem. Toxicol. 49 (2011) 1560-1564.

DOI: 10.1016/j.fct.2011.03.052

Google Scholar

[21] G.E.P. Box, D.W. Benhnken: Some new three level design for the study of quantitative variable. Technometrics. 2 (1960) 455-475.

Google Scholar

[22] G. Began, M. Goto, A. Kodama, and T. Hirose: Response surfaces of total oil yield of turmeric (Curcuma longa) in supercritical carbon dioxide. Food Res. Int. 33 (2000) 341-345.

DOI: 10.1016/s0963-9969(00)00053-3

Google Scholar

[23] M.G. Sajilata, R.S. Singhal, M.Y. Kamat: Fractionation of lipids and purification of γ-linolenic acid (GLA) from Spirulina platensis. Food Chem. 109 (2008b) 580-586.

DOI: 10.1016/j.foodchem.2008.01.005

Google Scholar