[1]
Adali, S., Verijenko, V. E. et al. Optimization of multilayered composite pressure vessels using exact elasticity solution, Composites for the Pressure Vessels Industry, PVP-V302, ASME, 203- 312. . (1995).
DOI: 10.1007/978-3-642-79654-8_365
Google Scholar
[2]
Kumar LR, Datta PK and Prabhakara DL. Dynamic instability characteristics of laminated composite doubly curved panels subjected to partially distributed follower edge loading. Int J Solid Struct 42: (2005), 2243–2264.
DOI: 10.1016/j.ijsolstr.2004.09.024
Google Scholar
[3]
Rio TG, Barbero E, Zaera R and Navarro C. Dynamic tensile behavior at low temperature of CFRP using a split Hopkinson pressure bar. Compos Sci Technol; 65 (2005) 61–71.
DOI: 10.1016/j.compscitech.2004.06.004
Google Scholar
[4]
Thomas S, Geethamma VG, Kalaprasad G and Groeninckx G. Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Composites Part A 36: (2005) 1499–1506.
DOI: 10.1016/j.compositesa.2005.03.004
Google Scholar
[5]
Yang W-P, Chen L-W and Wang C-C. Vibration and dynamic stability of a traveling sandwich beam. J Sound Vibr; 285: (2005), 597–614.
DOI: 10.1016/j.jsv.2004.08.018
Google Scholar
[6]
. Hao XY, Gai GS, Lu FY, Zhao XJ, Zhang YH, Liu JP, et al. Dynamic mechanical properties of whisker/PA66 Composites at high strain rates. Polymers; 46: (2005), 3528–3534.
DOI: 10.1016/j.polymer.2005.02.042
Google Scholar
[7]
http: /www. tifac. org. in/news/acfil. htm.
Google Scholar
[8]
Cohen, D., Mantell, S. C. & Zhao, L. The Effect of Fiber Volume Fraction on Filament Wound Composite Pressure Vessel Strength, Composites: Part B, 32, (2001). 413-429.
DOI: 10.1016/s1359-8368(01)00009-9
Google Scholar
[9]
Crawford R. J. Plastics Engineering (3rd ed. ). Oxford: Butterworth Heinemann. (1998).
Google Scholar
[10]
. Dogan, T. Prediction of Composite Vessels under Various Loadings, Master of Science thesis. Graduate School of Natural and Applied Sciences of Dokuz Eylül University. (2006).
Google Scholar
[11]
. Jones, R. M. Mechanics of Composite Material (2nd ed. ). Philadelphia: Taylor & Francis (1998).
Google Scholar
[12]
Kabir, M. Z. Finite Element Analysis of Composite Pressure Vessels with a Load Sharing Metallic Liner, Composite Structures, 49, (2000). 247-255.
DOI: 10.1016/s0263-8223(99)00044-6
Google Scholar
[13]
Rao, V. V. S. & Sinha, P. K. Dynamic Response of Multidirectional Composites in Hygrothermal Environments, Composite Structures, 64, (2004) 329-338.
DOI: 10.1016/j.compstruct.2003.09.002
Google Scholar
[14]
Roy, A. K., Massard, T. NA, Design Study of Multilayered Composite Spherical Pressure Vessels, Journal of Reinforced Plastic and Composites, VII, (1992). 479-493.
DOI: 10.1177/073168449201100502
Google Scholar
[15]
Sayman, O, Analysis of Multi-Layered Composite Cylinders under Hygrothermal Loading, Composites Part A, 1-11. . (2005).
DOI: 10.1016/j.compositesa.2004.12.007
Google Scholar
[16]
Tsai, S. W. & Roy A. K., Design of Thick Composite Cylinders, Journal of Pressure Vessel Technology. (1988).
Google Scholar
[17]
Xia, M., Takayanagi, H. & Kemmochi, K., Analysis of Transverse Loading for Laminated Cylindrical Pipes, Composite Structures, 53, (2001), 279-285.
DOI: 10.1016/s0263-8223(01)00011-3
Google Scholar