[1]
C.S.K. Reddy, R. Ghai, R. Rashmi, V.C. Kalia, Bioresour. Technol. 87 (2003) 137.
Google Scholar
[2]
B. Kessler, B. Wilholt, Poly(3-hydroxyalkanoates). In: FlickingerMC, Drew SW (eds) Encyclopedia of bioprocess technology—fermentation, biocatalysis and bioseparation. Wiley, New York, 1999, p.2024–(2040).
DOI: 10.1002/0471250589.ebt168
Google Scholar
[3]
S. Obruca, O. Snajdar, Z. Svoboda, I. Marova, Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil. World J Microbiol Biotechnol. 29 (2013) 2417-2428.
DOI: 10.1007/s11274-013-1410-5
Google Scholar
[4]
M. Koller, R. Bona, C. Hermann, P. Horvat, J. Martinz, J. Neto, L. Pereira, P. Varila, G. Braunegg, Biotechnological production of poly(3-hydroxybutyrate) with Wautersia eutropha by application of green grass juice and silage juice as additional complex substrates. Biocatal Biotrans. 23 (2005).
DOI: 10.1080/10242420500292252
Google Scholar
[5]
J.I. Choi, S.Y. Lee, Process analysis and economical evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess Eng. 17 (1997) 335–342.
DOI: 10.1007/s004490050394
Google Scholar
[6]
I. Taniguchi, K. Kagotani, Y. Kimura, Microbial production of poly(hydroxyalkanoates) from waste edible oils. Green Chem. 5 (2003) 545-548.
DOI: 10.1039/b304800b
Google Scholar
[7]
B.H.A. Rehm, N. Kruger, A. Steinbüchel, A New Metabolic Link between Fatty Acid de Novo Synthesis and Polyhydroxyalkanoic Acid Synthesis. J Biol Chem 273 (1998) 24044–24051.
DOI: 10.1074/jbc.273.37.24044
Google Scholar
[8]
P. Kahar, T. Tsuge, K. Taguchi, Y. Doi, High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Pol Degrad Stabil. 83 (2004) 79–86.
DOI: 10.1016/s0141-3910(03)00227-1
Google Scholar
[9]
J.G.D. Pradella, J.L. Ienczak, C.R. Delgado, M.K. Taciro, Carbon source pulsed feeding to attain high yield and high productivity in poly(3-hydroxybutyrate) (PHB) production from soybean oil using Cupriavidus necator. Biotech Lett. 34 (2012).
DOI: 10.1007/s10529-012-0863-1
Google Scholar
[10]
S. Obruca, I. Marova, O. Snajdar, Z. Svoboda, Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol Lett. 32 (2010) 1925-(1932).
DOI: 10.1007/s10529-010-0376-8
Google Scholar
[11]
S. Obruca, P. Benesova, J. Oborna, I. Marova, Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator. Biotechnol Lett. 36 (2014) 775-781.
DOI: 10.1007/s10529-013-1407-z
Google Scholar
[12]
S. Obruca, I. Marova, M. Stankova, L. Mravcova, Z. Svoboda, Effect of ethanol and hydrogen peroxide on poly(3-hydroxybutyrate) biosynthetic pathway in Cupriavidus necator H16. World J Microbiol Biotechnol. 26 (2010) 1261–1267.
DOI: 10.1007/s11274-009-0296-8
Google Scholar
[13]
L.P. Mazur, D.D. Silva, V.H. Grigull, M.C.F. Garcia, T.O. Magalhães, T.M. Wagner, S. Einloft, J. Dullius, A.L. Schneider, A.P.T. Pezzin, Strategies of biosynthesis of poly(3-hydroxybutyrate) supplemented with biodiesel obtained from rice bran oil. Materials Science and Engineering C. 29 (2009).
DOI: 10.1016/j.msec.2008.10.009
Google Scholar
[14]
K.S. Ng, W.Y. Ooi, L.K. Goh, R. Shenbagarathai, K. Sudesh, Evaluation of jatropha oil to produce poly(3-hydroxybutyrate) by Cupriavidus necator H16. Polym Degrad Stab. 95 (2010) 1365–1369.
DOI: 10.1016/j.polymdegradstab.2010.01.021
Google Scholar
[15]
R. A.J. Verlinden, J. H. David, A. K. Melvin, D. W. Craig, Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express. 1 (2011) 11.
DOI: 10.1186/2191-0855-1-11
Google Scholar
[16]
J. Wang, J. Yu, Kinetic analysis on formation of poly(3-hydroxybutyrate) from acetic acid by Ralstonia eutropha under chemically defined conditions. J Ind Microbiol Biotechnol. 26 (2001) 121–126.
DOI: 10.1038/sj.jim.7000097
Google Scholar
[17]
Y.J. Wang, F.L. Hua, Y.F. Tsang, S.Y. Chan, S.N. Sin, H. Chua, P.H. F Yu, N.Q. Ren, Synthesis of PHAs from waster under various C: N ratios. Bioresource Technol. 98 (2007) 1690–1693.
DOI: 10.1016/j.biortech.2006.05.039
Google Scholar
[18]
B. Vasanthakumar, H. Ravishankar, S. Subramanian, Microbially induced selective flotation of sphalerite from galena using mineral-adapted strains of Bacillus megaterium. Colloids Surf., B. 112 (2013) 279-286.
DOI: 10.1016/j.colsurfb.2013.07.034
Google Scholar
[19]
A.C. López, A.M. Alippi. Diversity of Bacillus megaterium isolates cultured from honeys. LWT - Food Science and Technology. 42 (2009) 212-219.
DOI: 10.1016/j.lwt.2008.05.001
Google Scholar
[20]
R. M. Rashmi, P. Sunita, D. Jyotirmayee, et al, Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere. 84 (2011).
DOI: 10.1016/j.chemosphere.2011.05.025
Google Scholar