[1]
A.A. Carbonell-Barrachina, A. Rocamora, C. Garcı́a-Gomis, F. Martı́nez-Sánchez, F. Burló, Arsenic and zinc biogeochemistry in pyrite mine waste from the Aznalcóllar environmental disaster, Geoderma, 122 (2004) 195-203.
DOI: 10.1016/j.geoderma.2004.01.008
Google Scholar
[2]
G.R. Robinson, Jr., P. Larkins, C.J. Boughton, B.W. Reed, P.L. Sibrell, Assessment of contamination from arsenical pesticide use on orchards in the Great Valley region, Virginia and West Virginia, USA, Journal Of Environmental Quality, 36 (2007).
DOI: 10.2134/jeq2006.0413
Google Scholar
[3]
J.J. Morrell, D. Keefe, R.T. Baileys, Copper, zinc, and arsenic in soil surrounding Douglas-fir poles treated with ammoniacal copper zinc arsenate (ACZA), Journal Of Environmental Quality, 32 (2003) 2095-(2099).
DOI: 10.2134/jeq2003.2095
Google Scholar
[4]
K. Jomova, Z. Jenisova, M. Feszterova, S. Baros, J. Liska, D. Hudecova, C.J. Rhodes, M. Valko, Arsenic: toxicity, oxidative stress and human disease, Journal of Applied Toxicology, 31 (2011) 95-107.
DOI: 10.1002/jat.1649
Google Scholar
[5]
W. Hartley, R. Edwards, N.W. Lepp, Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests, Environmental Pollution, 131 (2004) 495-504.
DOI: 10.1016/j.envpol.2004.02.017
Google Scholar
[6]
J.Y. Kim, A.P. Davis, K.W. Kim, Stabilization of available arsenic in highly contaminated mine tailings using iron, Environmental Science & Technology, 37 (2003) 189-195.
DOI: 10.1021/es020799+
Google Scholar
[7]
S.K. Porter, K.G. Scheckel, C.A. Impellitteri, J.A. Ryan, Toxic metals in the environment: Thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg, Critical Reviews In Environmental Science And Technology, 34 (2004).
DOI: 10.1080/10643380490492412
Google Scholar
[8]
A. Jain, K.P. Raven, R.H. Loeppert, Arsenite and arsenate adsorption on ferrihydrite: Surface charge reduction and net OH- release stoichiometry, Environmental Science & Technology, 33 (1999) 1179-1184.
DOI: 10.1021/es980722e
Google Scholar
[9]
A. Xenidis, C. Stouraiti, N. Papassiopi, Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron, Journal of Hazardous Materials, 177 (2010) 929-937.
DOI: 10.1016/j.jhazmat.2010.01.006
Google Scholar
[10]
H. Zhao, H. Zhang, M. Tang, F. Li, In Situ Chemical Stabilization of Arsenic-Contaminated Soils Using Ferrous Sulfate in: Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on IEEE, Chengdu, 2010, pp.1-5.
DOI: 10.1109/icbbe.2010.5517439
Google Scholar
[11]
J.L. Subacz, M.O. Barnett, P.M. Jardine, M.A. Stewart, Decreasing arsenic bioaccessibility/bioavailability in soils with iron amendments, Journal Of Environmental Science And Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 42 (2007).
DOI: 10.1080/10934520701436047
Google Scholar
[12]
X. Meng, S. Bang, G.P. Korfiatis, Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride, Water Research, 34 (2000) 1255-1261.
DOI: 10.1016/s0043-1354(99)00272-9
Google Scholar
[13]
L. Yang, R.J. Donahoe, J.C. Redwine, In situ chemical fixation of arsenic-contaminated soils: An experimental study, Science of The Total Environment, 387 (2007) 28-41.
DOI: 10.1016/j.scitotenv.2007.06.024
Google Scholar
[14]
J. Giménez, M. Martínez, J. de Pablo, M. Rovira, L. Duro, Arsenic sorption onto natural hematite, magnetite, and goethite, Journal of Hazardous Materials, 141 (2007) 575-580.
DOI: 10.1016/j.jhazmat.2006.07.020
Google Scholar
[15]
X. Sun, H.E. Doner, Adsorption and oxidation of arsenite on goethite, Soil Science, 163 (1998) 278-287.
DOI: 10.1097/00010694-199804000-00003
Google Scholar
[16]
J. Kumpiene, A. Lagerkvist, C. Maurice, Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – A review, Waste Management, 28 (2008) 215-225.
DOI: 10.1016/j.wasman.2006.12.012
Google Scholar