[1]
I. Kim, D. Kim, and S. Hyun, Effect of particle size and sodium ion concentration on anaerobic thermophilic food waste digestion, Water Sci. Technol. 41 (2000) 67-73.
DOI: 10.2166/wst.2000.0057
Google Scholar
[2]
H. Shin, S. Han, Y. Song, and C. Lee, Performance of UASB reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste, Water Res. 35 (2001) 3441-3447.
DOI: 10.1016/s0043-1354(01)00041-0
Google Scholar
[3]
L. Zhang, Y. -W. Lee, and D. Jahng, Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements, Bioresour. Technol. 102 (2011) 5048-5059.
DOI: 10.1016/j.biortech.2011.01.082
Google Scholar
[4]
S. Kim, K. Choi, J. Kim, and J. Chung, Biological hydrogen production by anaerobic digestion of food waste and sewage sludge treated using various pretreatment technologies, Biodegradation. 24 (2013) 753-764.
DOI: 10.1007/s10532-013-9623-8
Google Scholar
[5]
P. Zhou, E. Elbeshbishy, and G. Nakhla, Optimization of biological hydrogen production for anaerobic co-digestion of food waste and wastewater biosolids, Bioresour. Technol. 130 (2013) 710-718.
DOI: 10.1016/j.biortech.2012.12.069
Google Scholar
[6]
Rajagopal, R. and F. Béline, Anaerobic hydrolysis and acidification of organic substrates: determination of anaerobic hydrolytic potential, Bioresour. Technol. 102 (2011) 5653-5658.
DOI: 10.1016/j.biortech.2011.02.068
Google Scholar
[7]
M. Albuquerque, M. Eiroa, C. Torres, B. Nunes, and M, Reis, Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses, J. Biotechnol. 130 (2007) 411-421.
DOI: 10.1016/j.jbiotec.2007.05.011
Google Scholar
[8]
X. Hai-Lou, W. Jing-Yuan, and T. Joo-Hwa, A hybrid anaerobic solid-liquid bioreactor for food waste digestion, Biotechnol. Lett. 24 (2002) 757-761.
DOI: 10.1023/a:1015517617907
Google Scholar
[9]
J. Wang, H. Zhang, O. Stabnikova, S. Ang, and J. Tay, A hybrid anaerobic solidliquid system for food waste digestion, Water Sci. Technol. 52(2005) 223-228.
DOI: 10.2166/wst.2005.0521
Google Scholar
[10]
G.N. Demirer and S. Chen, Anaerobic biogasification of undiluted dairy manure in leaching bed reactors, Waste Manag. 28 (2008) 112-9.
DOI: 10.1016/j.wasman.2006.11.005
Google Scholar
[11]
A. Selvam, S.Y. Xu, X.Y. Gu, and J.W.C. Wong, Food waste decomposition in leachbed reactor: role of neutralizing solutions on the leachate quality, Bioresour Technol. 101 (2010) 1707-14.
DOI: 10.1016/j.biortech.2009.10.008
Google Scholar
[12]
B. Zhang, P. He, F. Lü, L. Shao, and P. Wang, Extracellular enzyme activities during regulated hydrolysis of high-solid organic wastes, Water Res. 41 (2007) 4468-4478.
DOI: 10.1016/j.watres.2007.06.061
Google Scholar
[13]
L. Chen, W.Z. Jiang, Y. Kitamura, and B. Li, Enhancement of hydrolysis and acidification of solid organic waste by a rotational drum fermentation system with methanogenic leachate recirculation, Bioresour. Technol. 98 (2007) 2194-2200.
DOI: 10.1016/j.biortech.2006.08.015
Google Scholar
[14]
F. Lü, P.J. He, L.P. Hao, and L.M. Shao, Impact of recycled effluent on the hydrolysis during anaerobic digestion of vegetable and flower waste, Water Sci. Technol. 58 (2008).
DOI: 10.2166/wst.2008.511
Google Scholar
[15]
H.J. Kim, S.H. Kim, Y.G. Choi, and G.D. Kim, Effect of enzymatic pretreatment on acid fermentation of food waste, J Chem. Technol. Biotechnol. 81 (2006) 974-980.
DOI: 10.1002/jctb.1484
Google Scholar
[16]
P.S. Jagadabhi, P. Kaparaju, and J. Rintala, Effect of micro-aeration and leachate replacement on COD solubilization and VFA production during mono-digestion of grass-silage in one-stage leach-bed reactors, Bioresour Technol. 101 (2010).
DOI: 10.1016/j.biortech.2009.10.083
Google Scholar
[17]
S.Y. Xu, H.P. Lam, O.P. Karthikeyan, and J.W.C. Wong, Optimization of food waste hydrolysis in leach bed coupled with methanogenic reactor: Effect of pH and bulking agent, Bioresour Technol. 102(2011) 3702-37088.
DOI: 10.1016/j.biortech.2010.11.095
Google Scholar
[18]
A.D. Eaton, and M.A.H. Franson, Standard Methods for the Examination of Water & Wastewater, illustration ed., American Public Health Association, (2005).
Google Scholar
[19]
J. -i. Horiuchi, T. Shimizu, T. Kanno, and M. Kobayashi, Dynamic behavior in response to pH shift during anaerobic acidogenesis with a chemostat culture, Biotechnology Techniques. 13(1999) 155-157.
Google Scholar
[20]
E. Dogan, T. Dunaev, T.H. Erguder, and G.N. Demirer, Performance of leaching bed reactor converting the organic fraction of municipal solid waste to organic acids and alcohols, Chemosphere. 74 (2009) 797-803.
DOI: 10.1016/j.chemosphere.2008.10.028
Google Scholar
[21]
O. Stabnikova, X. -Y. Liu, and J. -Y. Wang, Anaerobic digestion of food waste in a hybrid anaerobic solid–liquid system with leachate recirculation in an acidogenic reactor, Biochem. Eng. J. 41 (2008) 198-201.
DOI: 10.1016/j.bej.2008.05.008
Google Scholar
[22]
R. Speece, The role of pH in the organic material solubilization of domestic sludge in anaerobic digestion, Water Sci. Technol. 48 (2003. ) 143-150.
DOI: 10.2166/wst.2003.0185
Google Scholar
[23]
A. Breure and J. Van Andel, Hydrolysis and acidogenic fermentation of a protein, gelatin, in an anaerobic continuous culture, Appl. Microbiol. Biotechnol. 20 (1984) 40-45.
DOI: 10.1007/bf00254644
Google Scholar
[24]
W. Parawira, M. Murto, J.S. Read, and B. Mattiasson, Profile of hydrolases and biogas production during two-stage mesophilic anaerobic digestion of solid potato waste, Process Biochem. 40(2005) 2945-2952.
DOI: 10.1016/j.procbio.2005.01.010
Google Scholar