[1]
A. Domínguez, J.A. Menéndez, M. Inguanzo, and J.J. Pís, Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Bioresource Technology 97 (2006) 1185-1193.
DOI: 10.1016/j.biortech.2005.05.011
Google Scholar
[2]
A.M. Cunliffe, and P.T. Williams, Composition of oils derived from the batch pyrolysis of tyres. Journal of Analytical and Applied Pyrolysis 44 (1998) 131-152.
DOI: 10.1016/s0165-2370(97)00085-5
Google Scholar
[3]
I. Faengmark, B. van Bavel, S. Marklund, B. Stroemberg, N. Berge, and C. Rappe, Influence of combustion parameters on the formation of polychlorinated dibenzo-p-dioxins, dibenzofurans, benzenes, and biphenyls and polyaromatic hydrocarbons in a pilot incinerator. Environmental science & technology 27 (1993).
DOI: 10.1021/es00045a016
Google Scholar
[4]
I. Fonts, G. Gea, M. Azuara, J. Ábrego, and J. Arauzo, Sewage sludge pyrolysis for liquid production: A review. Renewable and Sustainable Energy Reviews 16 (2012) 2781-2805.
DOI: 10.1016/j.rser.2012.02.070
Google Scholar
[5]
J. Werther, and T. Ogada, Sewage sludge combustion. Progress in Energy and Combustion Science 25 (1999) 55-116.
DOI: 10.1016/s0360-1285(98)00020-3
Google Scholar
[6]
J.H. Ferrasse, S. Chavez, P. Arlabosse, and N. Dupuy, Chemometrics as a tool for the analysis of evolved gas during the thermal treatment of sewage sludge using coupled TG–FTIR. Thermochimica Acta 404 (2003) 97 - 108.
DOI: 10.1016/s0040-6031(03)00064-9
Google Scholar
[7]
L. Xie, T. Li, J. Gao, X. Fei, X. Wu, and Y. Jiang, Effect of moisture content in sewage sludge on air gasification. Journal of Fuel Chemistry and Technology 38 (2010) 615-620.
DOI: 10.1016/s1872-5813(10)60048-5
Google Scholar
[8]
Q. Dai, X. Jiang, F. Wang, Y. Chi, and J. Yan, PCDD/Fs in wet sewage sludge pyrolysis using conventional and microwave heating. Journal of Analytical and Applied Pyrolysis (2013).
DOI: 10.1016/j.jaap.2013.07.005
Google Scholar
[9]
R. Font, A. Fullana, and J. Conesa, Kinetic models for the pyrolysis and combustion of two types of sewage sludge. Journal of Analytical and Applied Pyrolysis 74 (2005) 429 - 438.
DOI: 10.1016/j.jaap.2004.10.009
Google Scholar
[10]
R. Font, J.A. Conesa, J. Molt O, and M. Mu N Oz, Kinetics of pyrolysis and combustion of pine needles and cones. Journal of Analytical and Applied Pyrolysis 85 (2009) 276-286.
DOI: 10.1016/j.jaap.2008.11.015
Google Scholar
[11]
S. Widman, D. Boström, M. Öhman, and M. Broström, EARLY RELEASE OF NH3 FROM NITROGEN RICH FUELS–A TG-FTIR STUDY, 22nd European Biomass Conference and Exhibition, ETA-Florence Renewable Energies, (2013).
Google Scholar
[12]
W. Deng, J. Yan, X. LI, F. Wang, Y. Chi, and S. Lu, Emission characteristics of dioxins, furans and polycyclic aromatic hydrocarbons during fluidized-bed combustion of sewage sludge. Journal of Environmental Sciences 21 (2009) 1747-1752.
DOI: 10.1016/s1001-0742(08)62483-3
Google Scholar
[13]
W.K. Buah, A.M. Cunliffe, and P.T. Williams, Characterization of Products from the Pyrolysis of Municipal Solid Waste. Process Safety and Environmental Protection 85 (2007) 450-457.
DOI: 10.1205/psep07024
Google Scholar
[14]
W.T. Tsai, M.K. Lee, and Y.M. Chang, Fast pyrolysis of rice husk: Product yields and compositions. Bioresource Technology 98 (2007) 22-28.
DOI: 10.1016/j.biortech.2005.12.005
Google Scholar
[15]
X. Jiang, C. Li, Y. Chi, and J. Yan, TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion. Journal of Hazardous Materials 173 (2010) 205-210.
DOI: 10.1016/j.jhazmat.2009.08.070
Google Scholar
[16]
Y. Feng, X. Jiang, Y. Chi, X. Li, and H. Zhu, Volatilization behavior of fluorine in fluoroborate residue during pyrolysis. Environ Sci Technol 46 (2012) 307-11.
DOI: 10.1021/es202828k
Google Scholar