[1]
Ogunseitan O A, Schoenung J M, Saphores J M, et al. The Electronics Revolution: From E-Wonderland to E-Wasteland. Science, 2009, 326(5953): 670~671.
DOI: 10.1126/science.1176929
Google Scholar
[2]
Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, et al. Global perspectives on e-waste. Environmental Impact Assessmen., 2005, 25(5): 436~458.
DOI: 10.1016/j.eiar.2005.04.001
Google Scholar
[3]
Information on http: /i. unu. edu/media/unu. edu/news/41225/World-E-Waste-Map-Reveals-National-Volumes-International-Flows. pdf.
Google Scholar
[4]
Duan H B, Hou K, Li J H, et al. Examining the technology acceptance for dismantling of waste printed circuit boards in light of recycling and environmental concerns. J. Environ. Manage., 2011, 92(3): 392~399.
DOI: 10.1016/j.jenvman.2010.10.057
Google Scholar
[5]
Mark S, Matthew K, Kathryn S, et al. Extractive Metallurgy of Copper Elsevier, 2011. 427.
Google Scholar
[6]
Cui J R, Zhang L F. Metallurgical recovery of metals from electronic waste: A review. J. Hazard. Mater., 2008, 158(2-3): 228~256.
Google Scholar
[7]
Luyima A, Shi H L, Zhang L F. Leaching Studies for Metals Recovery from Waste Printed Wiring Boards. JOM, 2011, 63(8): 38~41.
DOI: 10.1007/s11837-011-0135-x
Google Scholar
[8]
Yang H Y, Liu J Y, Yang J K. Leaching copper from shredded particles of waste printed circuit boards. J. Hazard. Mater., 2011, 187(1-3): 393~400.
DOI: 10.1016/j.jhazmat.2011.01.051
Google Scholar
[9]
Sheng P P, Etsell T H. Recovery of gold from computer circuit board scrap using aqua regia. Waste Manage. Res., 2007, 25 (4): 380~383.
DOI: 10.1177/0734242x07076946
Google Scholar
[10]
Veit H M, Bernardes A M, Ferreira J Z, et al. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy. J. Hazard. Mater., 2006, 137(3): 1704~1709.
DOI: 10.1016/j.jhazmat.2006.05.010
Google Scholar
[11]
Chang F C, Lo S L, Ko C H. A copper removal process for printed circuit board wastewater sludge applying extraction and cementation with chelating agents recovery. Environ. Eng. Sci., 2007, 24(8): 1006~1016.
DOI: 10.1089/ees.2006.0060
Google Scholar
[12]
Chang F C, Lo S L, Ko C H. Recovery of copper and chelating agents from sludge extracting solutions. Sep. Purif. Technol., 2007, 53(1): 49~56.
DOI: 10.1016/j.seppur.2006.06.011
Google Scholar
[13]
Cui J, Forssberg E. Mechanical recycling of waste electric and electronic equipment: a review. J. Hazard. Mater., 2003, 99(3): 243~263.
DOI: 10.1016/s0304-3894(03)00061-x
Google Scholar
[14]
Li J, Gao B, Xu Z. New technology for Separating Resin powder and Fiberglass powder from Fiberglass-Resin powder Portion of Waste Printed Circuit Board. Environ. Sci. Technol., 2014, 48(9): 5171~5178.
DOI: 10.1021/es405679n
Google Scholar
[15]
Huang K, Guo J, Xu Z M. Recycling of waste printed circuit boards: A review of current technologies and treatment status in China. J. Hazard. Mater., 2009, 164(2-3): 399~408.
DOI: 10.1016/j.jhazmat.2008.08.051
Google Scholar
[16]
Li J, Lu H, Guo J, et al. Recycle Technology for Recovering Resources and Products from Waste Printed Circuit Boards. Environ. Sci. Technol., 2007, 41(6): 1995~(2000).
DOI: 10.1021/es0618245
Google Scholar
[17]
Zhu P, Chen Y, Wang L, et al. Dissolution of Brominated Epoxy Resins by Dimethyl Sulfoxide To Separate Waste Printed Circuit Boards. Environ. Sci. Technol., 2013, 47(6): 2654~2660.
DOI: 10.1021/es303264c
Google Scholar
[18]
James S L, Friscic T. Mechanochemistry: a web themed issue. Chem. Commun., 2013, 49: 5349~5350.
Google Scholar
[19]
Balaz P. Mechanochemistry in Nanoscience and Minerals Engineering. Verlag Berlin Heidelberg: Springer, (2008).
Google Scholar
[20]
Sasai R, Kubo H, Kamiya M, et al. Development of an Eco-Friendly Material Recycling Process for Spent Lead Glass Using a Mechanochemical Process and Na2EDTA Reagent. Environ. Sci. Technol., 2008, 42(11): 4159~4164.
DOI: 10.1021/es0719576
Google Scholar
[21]
Yuan W, Li J, Zhang Q, et al. Innovated Application of Mechanical Activation To Separate Lead from Scrap Cathode Ray Tube Funnel Glass. Environ. Sci. Technol., 2012, 46(7): 4109~4114.
DOI: 10.1021/es204387a
Google Scholar
[22]
Saeki S, Lee J, Zhang Q, et al. Co-grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product. Int. J. Miner. Process., 2004, 74, Supplement(0): S373~S378.
DOI: 10.1016/j.minpro.2004.08.002
Google Scholar
[23]
Zhang Q, Lu J, Saito F, et al. Room temperature acid extraction of Co from LiCo0. 2Ni0. 8O2 scrap by a mechanochemical treatment. Adv. Powder Technol., 2000, 11(3): 353~359.
DOI: 10.1163/156855200750172222
Google Scholar
[24]
Mio H, Lee J Y, Nakagawa T, et al. Estimation of extraction rate of yttrium from fluorescent powder by ball milling. Mater. Trans., 2001, 42(11SI): 2460~2464.
DOI: 10.2320/matertrans.42.2460
Google Scholar
[25]
Zhang Q, Saeki S, Tanaka Y, et al. A soft-solution process for recovering rare metals from metal/alloy-wastes by grinding and washing with water. J. Hazard. Mater., 2007, 139(3): 438~442.
DOI: 10.1016/j.jhazmat.2006.02.058
Google Scholar
[26]
Zhang Q W, Saito F. Non-thermal process for extracting rare earths from bastnaesite by means of mechanochemical treatment. Hydrometallurgy, 1998, 47(2-3): 231~241.
DOI: 10.1016/s0304-386x(97)00048-0
Google Scholar
[27]
Murakami Y, Shindo D, Zhang Q, et al. Microstructural investigation on the mechanism to extract indium from wasted materials. Mater. Sci. Eng., A, 2002, 332(1–2): 64~69.
DOI: 10.1016/s0921-5093(01)01717-8
Google Scholar
[28]
Hasegawa H, Rahman I, Egawa Y, et al. Recovery of indium from end-of-life liquid-crystal display panels using aminopolycarboxylate chelants with the aid of mechanochemical treatment. Microchem J., 2013, 106: 289~294.
DOI: 10.1016/j.microc.2012.08.010
Google Scholar
[29]
Balaz P, Achimovicova M, Balaz M, et al. Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev., 2013, 42: 7571~7637.
Google Scholar
[30]
Tezuka K, Sheets W C, Kurihara R, et al. Synthesis of covellite (CuS) from the elements. Solid State Sci., 2007, 9(1): 95~99.
DOI: 10.1016/j.solidstatesciences.2006.10.002
Google Scholar
[31]
Zhang F, Wong S S. Controlled Synthesis of Semiconducting Metal Sulfide Nanowires. Chem. Mater., 2009, 21(19): 4541~4554.
DOI: 10.1021/cm901492f
Google Scholar
[32]
Wang X, Xu C, Zhang Z. Synthesis of CuS nanorods by one-step reaction. Mater. Lett., 2006, 60(3): 345~348.
DOI: 10.1016/j.matlet.2005.08.048
Google Scholar
[33]
Blachnik R, Müller A. The formation of Cu2S from the elements: I. Copper used in form of powders. Thermochim. Acta, 2000, 361(1–2): 31~52.
DOI: 10.1016/s0040-6031(00)00545-1
Google Scholar
[34]
Sokić M D, Marković B, ~ivković D. Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid. Hydrometallurgy, 2009, 95(3–4): 273~279.
DOI: 10.1016/j.hydromet.2008.06.012
Google Scholar
[35]
Mahajan V, Misra M, Zhong K, et al. Enhanced leaching of copper from chalcopyrite in hydrogen peroxide–glycol system. Miner. Eng., 2007, 20(7): 670~674.
DOI: 10.1016/j.mineng.2006.12.016
Google Scholar