Bio-Extraction of Metals as Secondary Resources from E-Waste

Article Preview

Abstract:

Electronic waste is widespread across the globe comprises wide range of elements, growing exponential recent years and even categorized as hazardous if the elements like lead, mercury, arsenic, cadmium, selenium, and hexavalent chromium etc. are present beyond the permissible quantities. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals. Bio-extraction of metals from E-waste with microbes such as bacteria and fungi is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the biological extraction techniques including an assessment has been made to quantify the different E-waste and their metal compositions, microbes used, metal leaching efficiency etc. and proposes that the biological recovery allows the cycling of metals by a process close to natural biogeochemical cycles reducing the demand for resources such as ores, energy, or landfill space.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

602-611

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Ilyas, M. A. Anwar, S. B. Niazi, M. A. Ghauri, Hydrometallurgy 2007, 88, 180–188.

Google Scholar

[2] European Union, Off. J. Eur. Communities: Legis. 2012, L 97, 38–71.

Google Scholar

[3] Bulletin Waste Management World, Undercover investigations into e-waste smuggling, May 16, (2011).

Google Scholar

[4] Takashima, M., 1999. Method for recovering aluminum from materials containing metallic aluminum. US Patent No. 5 855, 644.

Google Scholar

[5] Nnorom, I.C., Osibanjo, O., 2008. Electronic waste (e-waste): material flows and management practices in Nigeria. Waste Management 28, 1472–1479.

DOI: 10.1016/j.wasman.2007.06.012

Google Scholar

[6] Widmer, R., Oswald-Krapf, H., Sinha-Khetriwal, D., Schnellmann, M., Bon, H., 2005. Global perspectives on E-waste. Environmental Impact Assessment Review 25 (5), 436–458.

DOI: 10.1016/j.eiar.2005.04.001

Google Scholar

[7] Babu, R., Parande, A.K., Basha, A.C., 2007. Electrical and electronic waste: a global environmental problem. Waste Management & Research 25, 307–318.

DOI: 10.1177/0734242x07076941

Google Scholar

[8] Terazono, A., Murakami, S., Abe, N., Inanc, B., Moriguchi, Y., Sakai, S., Kojima, M., Yoshida, A., Li, J., Yang, J., Wong, M.H., Jain, A., Kim, L.S., Peralta, G.L., Lin, C., Mungcharoen, T., Willams, E., 2006. Current status and research on E-waste issues in Asia. Journal of Material Cycles and Waste Management 8, 1–12.

DOI: 10.1007/s10163-005-0147-0

Google Scholar

[9] Deepak Pant a, Deepika Joshi a, Manoj K. Upreti b, Ravindra K. Kotnala. Chemical and biological extraction of metals present in E waste: A hybrid technology. Waste Management 32 (2012) 979–990.

DOI: 10.1016/j.wasman.2011.12.002

Google Scholar

[10] Olson G.J., Breierley J.A., Breirley C.L., Bioleaching review. Part B. Progress in bioleaching: applications of microbial processes by the minerals industries, Appl. Microbiol. Biotechnol., 2003, 63 (3), 249.

Google Scholar

[11] Onwughara, N.I., Nnorom, I.C., Kanno, O.C., Chukwuma, R.C., 2010. Disposal methods and heavy metals released from certain electrical and electronic equipment wastes in nigeria: adoption of environmental sound recycling system. International Journal of Environmental Science and Development 1 (4), 291–292.

DOI: 10.7763/ijesd.2010.v1.57

Google Scholar

[12] CPCB, 2007. Draft guidelines for environmentally sound management of electronic waste, p.10–25 (http: /ewasteguide. info/newsandevents/new-dr).

Google Scholar

[13] Scharnhorst, W., Althaus, H.J., Classen, M., Jolliet, O., Hilty, L.M., 2005. The end of life treatment of second generation mobile phone networks: strategies to reduce the environmental impact. Environmental Impact Assessment Revision 25, 540–566.

DOI: 10.1016/j.eiar.2005.04.005

Google Scholar

[14] Bandyopadhyay, A., 2008. A regulatory approach for E-waste management: a cross-national review of current practice and policy with an assessment and policy recommendation for the Indian perspective. International Journal of Environment and Waste Management 2 (1-2).

DOI: 10.1504/ijewm.2008.016998

Google Scholar

[15] Hageluken, C., 2006. Improving metal returns and eco-efficiency in electronics recycling – a holistic approach for interface optimisation between pre- processing and integrated metals smelting and refining. IEEE International Symposium on Electronics and the Environment 218, 23.

DOI: 10.1109/isee.2006.1650064

Google Scholar

[16] Hageluken, C. and Art, S., 2006. Recycling of E-scrap in a global environment – chances and challenges: umicore precious metals refining,. Indo–European training workshop, 4–5 and 8–9 May 2006, Bangalore and New Delhi.

Google Scholar

[17] Cui, J., Zhang, L., 2008. Metallurgical recovery of metals from electronic waste: a review. Journal of Hazardous Materials 158, 228–256.

DOI: 10.1016/j.jhazmat.2008.02.001

Google Scholar

[18] Kang, H., Schoenung, J., 2005. Electronic waste recycling: a review of US infrastructure and technology options. Resources, Conservation and Recycling 45, 368–400.

DOI: 10.1016/j.resconrec.2005.06.001

Google Scholar

[19] Bosecker, K., 2001. Microbial leaching in environmental clean-up programmes. Hydrometallurgy 59, 245–248.

DOI: 10.1016/s0304-386x(00)00163-8

Google Scholar

[20] Lewandowski, G.A., De Fillipi, L.J. (Eds. ), 1998. Biological treatment of hazardous wastes. Wiley, New York.

Google Scholar

[21] Skippers, H.D., Turco, R.F., 1995. Bioremediation: Science and applications, SSSA Spec. Publ. No. 43 ASA, CSSA and SSSA. Madison, Wisconsin.

Google Scholar

[22] Salkin, F.I., 2003. Conventional and alternative technologies for the treatment of infectious waste. J. Mater. Cycles Waste Manage. 5, 9–12.

DOI: 10.1007/s101630300002

Google Scholar

[23] CD, O.E., 2001. (Organisation for Economic Cooperation, Development), The application of biotechnology to industrial sustainability–Christian A. OECD Publication Service, Hansen. Paris.

Google Scholar

[24] Brandl, H., Faramarzi, M.A., 2006. Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuology 4 (2), 93–97.

DOI: 10.1016/s1672-2515(07)60244-9

Google Scholar

[25] Brombcher CH., Bachofen R., Bandle H., Development of a laboratory-scale leaching plant for metal extraction from fly ash by Thiobacillus strains, Appl. Environ. Microbiol., 1998, 64 (4), 1237.

DOI: 10.1128/aem.64.4.1237-1241.1998

Google Scholar

[26] Debraj Mishra, Dong J. Kim, Ralph D.E., Jong-Hwan Ahn, Young HA Rhee, Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect, J. Hazard. Mater., 2008, 152 (3), 1082.

DOI: 10.1016/j.jhazmat.2007.07.083

Google Scholar

[27] Schinner, F., Burgstaller, W., 1989. Extraction of zinc from industrial waste by Penicillium sp. Appl. Environ. Microbiol. 55, 1153–1156.

DOI: 10.1128/aem.55.5.1153-1156.1989

Google Scholar

[28] Nagpal, S., Dahlstrom, D., Oolman, T., 1993. Effect of carbon dioxide concentration on the bioleaching of a pyrite-arsenopyrite ore concentrate. Biotechnology and Bioengineering 41, 459–464.

DOI: 10.1002/bit.260410409

Google Scholar

[29] Clark, D.A., Norris, P.R., 1996. Acidimicrobium ferrooxidans Gen. Nov., Sp. Nov.: mixed-culture ferrous iron oxidation with sulfobacillus species. Microbiology 142, 785–790.

DOI: 10.1099/00221287-142-4-785

Google Scholar

[30] Pant D, Joshi D, Upreti MK, Kotnala RK. 2012. Chemical and biological extraction of metals present in E waste: A hybrid technology. Waste management 32: 979-90.

DOI: 10.1016/j.wasman.2011.12.002

Google Scholar

[31] Brandle H., Bosshard R., Wegmann M., Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi, Hydrometallurgy, 2001, 59 (2, 3), 319.

DOI: 10.1016/s0304-386x(00)00188-2

Google Scholar

[32] Faramarzi M.A., Stagars M., Pensini E., Krebs W., Brandle H., Metal solubilization from metalcontaining solid materials by cyanogenic Chromobacterium violaceum, J. Biotechnol., 2004, 113 (1, 2), 321.

DOI: 10.1016/j.jbiotec.2004.03.031

Google Scholar

[33] Tao Yang, Zheng Xu, Jiankang Wen, Limei Yang, Factors influencing bioleaching copper frowaste printed circuit boards by Acidithiobacillus ferrooxidans, Hydrometallurgy, 2009, 97 (1, 2), 29.

DOI: 10.1016/j.hydromet.2008.12.011

Google Scholar

[34] Ilyas S., Ruan Ch., Bhatti H.N., Ghauri M.A., Anwar M.A., Column bioleaching of metals from electronic scrap, Hydrometallurgy, 2010, 101 (3, 4), 135.

DOI: 10.1016/j.hydromet.2009.12.007

Google Scholar

[35] Moon-Sung Choi, Kyung-Suk Cho, Dong-Su Kim, Dong-Jin Kim, Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus ferrooxidans, J. Environ. Sci. Health A, Tox. Hazard. Subst. Environ. Eng., 2005, 39 (11), 2973.

DOI: 10.1081/lesa-200034763

Google Scholar

[36] Pacholewska M., Farbiszewska T., Chalcopyrite concentrate leaching using sulphur- and iron-oxidizing bacteria, Polish J. Chem. Technol., 2003, 5 (4), 40.

Google Scholar

[37] Cwalina B., Pacholewska M., Sozanska M., Cabala J., Microenvironments determining growth of acidophilic bacteria in Zn-Pb flotation tailings of neutral reaction, Environ Protect. Eng., 2009, 35 (2), 113.

DOI: 10.1016/j.jbiotec.2007.07.480

Google Scholar

[38] Watling H.R., The bioleaching of sulphide minerals with emphasis on copper sulphides. A review, Hydrometallurgy, 2006, 84 (1–2), 81.

DOI: 10.1016/j.hydromet.2006.05.001

Google Scholar

[39] Ludwig C., Hellweg S., Stucki S., Municipal Solid Waste Management: Strategies and Technologies for Sustainable Solutions, Springer, Berlin, (2003).

Google Scholar

[40] Alan, N., De Klerk, B. J., William, D.D., Petrus, B., 2005. Recovery of precious metal from sulphide minerals by bioleaching. US Patent No. 6860919 (B1).

Google Scholar

[41] Olson, G.J., 2006. Microbial oxidation of gold ores and gold bioleaching. FEMS Microbiology Letters 119 (1–2), 1–6.

DOI: 10.1111/j.1574-6968.1994.tb06858.x

Google Scholar

[42] Suzuki, I., 2001. Microbial leaching of metals from sulfide minerals. Biotech Advances 19 (2), 119.

Google Scholar

[43] Tetsuo, I., Atsushi, S., 2001. Process for leaching copper from copper sulfide using bacteria. United States Patent: 6168766.

Google Scholar

[44] Chang-bin, W., Wei-min, Z., Hong-bo, Z., Bo, F., Ju-fang, H., Guan-zhou, Q., Dian-zuo, W., 2007. Bioleaching of chalcopyrite by mixed culture of moderately thermophilic microorganisms. Journal of Central South University of Technology 14 (4), 474.

DOI: 10.1007/s11771-007-0092-2

Google Scholar

[45] Johnson, D.B., Okibe, N., Wakeman, K., Yajie, L., 2008. Effect of temperature on the bioleaching of chalcopyrite concentrates containing different concentrations of silver. Hydrometallurgy 94 (1–4), 42–47.

DOI: 10.1016/j.hydromet.2008.06.005

Google Scholar

[46] Mulligan, C.N., Kamali, M., 2003. Bioleaching of copper and other metals from low- grade oxidized mining ores by Aspergillus niger. Journal of Chemical Technology and Biotechnology 78 (5), 497–503.

DOI: 10.1002/jctb.830

Google Scholar

[47] Xiang, Y., Wu, P., Zhu, N., Zhang, T., Liu, W., Wu, J., Li, P., 2010. Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. Journal of Hazardous Materials 184 (1–3), 812–818.

DOI: 10.1016/j.jhazmat.2010.08.113

Google Scholar

[48] Wang, J., Bai, J., Xu, J., Liang, B., 2009. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. Journal of Hazardous Materials 172 (2–3), 1100–1105.

DOI: 10.1016/j.jhazmat.2009.07.102

Google Scholar

[49] Groudev, S.N., 1987. Use of heterotrophic microorganisms in mineral biotechnology. Acta Biotechnology 7 (4), 299–306.

DOI: 10.1515/9783112581681-003

Google Scholar

[50] Pacholewska, M., 2004. Bioleaching of galena flotation concentrate Physicochem. Pro Min Process 38, 281.

Google Scholar

[51] Ren, W., Li, P., Geng, Y., Li, X., 2009. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger. Journal of Hazardous Materials 167 (1– 3), 164–169.

DOI: 10.1016/j.jhazmat.2008.12.104

Google Scholar

[52] Brandle H., Lelmann S., Faramarzi M.A., Martinelli D., Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms, Hydrometallurgy, 2008, 94 (1–4), 14.

DOI: 10.1016/j.hydromet.2008.05.016

Google Scholar

[53] Choi, M. -s., Cho, K. -s., Kim, D. -s., 2004. Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus ferrooxidans. J. Environ. Sci. Health–Part A Toxic /Hazard. Subst. Control. A39 (11–12), 2973–2982.

DOI: 10.1081/lesa-200034763

Google Scholar

[54] Yang, Z.Z., Zhao, X.R., Qin, Z.F., Fu, S., Li, X.H., Qin, X.F., Xu, X.B., Jin, Z.X., 2009. Polybrominated diphenyl ethers in mud snails (Cipangopaludina cahayensis) and sediments from an electronic waste recycling region in south China. Bulletin of Environmental Contamination and Toxicology 82, 206–210.

DOI: 10.1007/s00128-008-9600-9

Google Scholar

[55] Chi, Tran Dac, Lee, J. -c., Pandey, B. D., Jeong, J., Yoo, K. -k, Huyung, T. Hai. 2010. Bacterial cyanide generation in presence of metal ions (Na1+, Mg2+, Fe2+, Pb2+) and gold bioleaching from waste PCBs. J. Chem. Eng. Japan. doi: 10. 1252/ jcej. 10we232.

DOI: 10.1252/jcej.10we232

Google Scholar

[56] Kita, Y., Nishikawa, H., Takemoto, T., 2006. Effects of cyanide and dissolved oxygen concentration on biological gold recovery. J. Biotechnol. 124, 545–551.

DOI: 10.1016/j.jbiotec.2006.01.038

Google Scholar

[57] Pham, V.A., Ting, Y.P., 2009. Gold bioleaching of electronic waste by cyanogenic bacteria and its enhancement with bio-oxidation, Advanced Materials Research, 71–73.

DOI: 10.4028/www.scientific.net/amr.71-73.661

Google Scholar

[58] Creamer, N.J., Baxter-Plant, V.S., Henderson, M., Macaskie, L.E., 2006. Palladium and gold recovery from precious metal solutions and electronic scrap leachates by D. Desulfuricans. Biotechnol. Lett. 28, 1475–1484.

DOI: 10.1007/s10529-006-9120-9

Google Scholar