[1]
J.F. Tang, J.Y. Feng, X.H. Li, G. Li, Levels of flame retardants HBCD, TBBPA and TBC in surface soils from an industrialized region of East China, Environ. Sci.: Processes, Impacts 16 (2014) 1015-1021.
DOI: 10.1039/c3em00656e
Google Scholar
[2]
N. Ortuño, J. Moltó, J.A. Conesa, R. Font, Formation of brominated pollutants during the pyrolysis and combustion of tetrabromobisphenol A at different temperatures, Environ. Pollut. 191 (2014) 31-37.
DOI: 10.1016/j.envpol.2014.04.006
Google Scholar
[3]
X.Y. Zhou, J. Guo, W. Zhang, P. Zhou, J.J. Deng, K.F. Lin, Tetrabromobisphenol A contamination and emission in printed circuit board production and implications for human exposure. J. Hazard. Mater. 273 (2014) 27-35.
DOI: 10.1016/j.jhazmat.2014.03.003
Google Scholar
[4]
C. Rauert, B. Lazarov, S. Harrad, A. Covaci, M. Stranger, A review of chamber experiments for determining specific emission rates and investigating migration pathways of flame retardants, Atmos. Environ. 82 (2014) 44-55.
DOI: 10.1016/j.atmosenv.2013.10.003
Google Scholar
[5]
A.H. Feng, S.J. Chen, M.Y. Chen, M.J. He, X.J. Luo, B.X. Mai, Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) in riverine and estuarine sediments of the Pearl River Delta in southern China, with emphasis on spatial variability in diastereoisomer- and enantiomer-specific distribution of HBCD, Mar. Pollut. Bull. 64 (2014).
DOI: 10.1016/j.marpolbul.2012.03.008
Google Scholar
[6]
M. Gorga, E. Martínez, A. Ginebreda, E. Eljarrat, D. Barceló, Determination of PBDEs, HBB, PBEB, DBDPE, HBCD, TBBPA and related compounds in sewage sludge from Catalonia (Spain), Sci. Total Environ. 444 (2014) 51-59.
DOI: 10.1016/j.scitotenv.2012.11.066
Google Scholar
[7]
C.A. de Wit, D. Herzke, K. Vorkamp, Brominated flame retardants in the Arctic environment-Trends and new candidates, Sci. Total Environ. 408 (2010) 2885-2918.
DOI: 10.1016/j.scitotenv.2009.08.037
Google Scholar
[8]
H.G. Ni, H. Zeng, S. Tao, E.Y. Zeng, Environmental and human exposure to persistent halogenated compounds derived from e-waste in China, Environ. Toxicol. Chem. 29 (2010) 1237-1247.
DOI: 10.1002/etc.160
Google Scholar
[9]
M.A.E. Abdallah, S. Harrad, A. Covaci, Hexabromocyclododecanes and Tetrabromobisphenol-A in indoor air and dust in Birmingham, UK: Implications for human exposure, Environ. Sci. Technol. 42 (2008) 6855-6861.
DOI: 10.1021/es801110a
Google Scholar
[10]
U. Sellström, B. Jansson, Analysis of tetrabromobisphenol A in a product and environmental samples, Chemosphere 31 (1995) 3085-3092.
DOI: 10.1016/0045-6535(95)00167-7
Google Scholar
[11]
M. Fukushima, Y. Ishida, S. Shigematsu, H. Kuramitz, S. Nagao, Pattern of oxidation products derived from tetrabromobisphenol A in a catalytic system comprised of iron(III)-tetrakis(p-sulfophenyl)porphyrin, KHSO5 and humic acids, Chemosphere 80 (2010).
DOI: 10.1016/j.chemosphere.2010.05.041
Google Scholar
[12]
S. Decherf, I. Seugnet, J.B. Fini, M.S. Clerget-Froidevaux, B.A. Demeneix, Disruption of thyroid hormone-dependent hypothalamic set-points by environmental contaminants, Mol. Cell. Endocrinol. 323 (2010) 172-182.
DOI: 10.1016/j.mce.2010.04.010
Google Scholar
[13]
R. Cariou, J. Antignac, D. Zalko, A. Berrebi, J. Cravedi, D. Maume, P. Marchand, F. Monteau, A. Riu, F. Andre, B.L. Bizec, Chemosphere 73 (2008) 1036-1041.
DOI: 10.1016/j.chemosphere.2008.07.084
Google Scholar
[14]
I.I. Fasfous, E.S. Radwan, J.N. Dawoud, Kinetics, equilibrium and thermodynamics of the sorption of tetrabromobisphenol A on multiwalled carbon nanotubes, Appl. Surf. Sci. 256 (2010) 7246-7252.
DOI: 10.1016/j.apsusc.2010.05.059
Google Scholar
[15]
T.C. An, L. Zu, G.Y. Li, S.G. Wan, B.X. Mai, P.K. Wong, One-step process for debromination and aerobic mineralization of tetrabromobisphenol-A by a novel Ochrobactrum sp. T isolated from an e-waste recycling site, Bioresource Technol. 102 (2011).
DOI: 10.1016/j.biortech.2011.06.080
Google Scholar
[16]
K.L. Zhang, J. Huang, W. Zhang, Y.F. Yu, S.B. Deng, G. Yu, Mechanochemical degradation of tetrabromobisphenol A: Performance, products and pathway, J. Hazard. Mater. 243 (2012) 278-285.
DOI: 10.1016/j.jhazmat.2012.10.034
Google Scholar
[17]
L.C. Zhou, H. Zhang, L.Q. Ji, Y.M. Shao, Y.F. Li, Fe3O4/MWCNT as a heterogeneous Fenton catalyst: degradation pathways of tetrabromobisphenol A, RSC Adv. 4 (2014) 24900-24908.
DOI: 10.1039/c4ra02333a
Google Scholar
[18]
Y. Guo, L Chen, X. Yang, F. Ma, S. Zhang, Y. Yang, Y. Guo, X. Yuan, Visible light-driven degradation of tetrabromobisphenol A over heterostructured Ag/Bi5Nb3O15 materials, RSC Adv. 2 (2012) 4656-4663.
DOI: 10.1039/c2ra01278b
Google Scholar
[19]
G.B. Liu, H.Y. Zhao, T. Thiemann, Zn dust mediated reductive debromination of tetrabromobisphenol A (TBBPA), J. Hazard. Mater. 169 (2009) 1150-1153.
DOI: 10.1016/j.jhazmat.2009.03.114
Google Scholar
[20]
Y.M. Wang, F.S. Zhang, Debromination properties of tetrabromobisphenol A in super/subcritical water, Chinese J. Environ. Eng. 6 (2012) 285-291.
Google Scholar
[21]
M. Xu, G.M. Li, J. Guan, W.Z. He, Debromination and kinetics of O-bromophenol decomposition in hot alkaline solutions, Journal of Shanghai Second Polytechnic University 27 (2010) 272-277.
Google Scholar
[22]
S.K. Han, P. Bilski, B. Karriker, RH. Sik, C.F. Chignell, Oxidation of flame retardant tetrabromobisphenol A by singlet oxygen, Environ. Sci. Technol. 42 (2008) 166-172.
DOI: 10.1021/es071800d
Google Scholar