[1]
M.T. Reza, B. Wirth, U. Lüder, M. Werner, Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass, Bioresour. Technol. 169 (2014) 352-361.
DOI: 10.1016/j.biortech.2014.07.010
Google Scholar
[2]
M.T. Reza, M.H. Uddin, J.G. Lynam, S.K. Hoekmann, C.J. Coronella, Hydrothermal carbonization: Fate of inorganics, Biomass Bioenerg. 49 (2013) 86-94.
DOI: 10.1016/j.biombioe.2012.12.004
Google Scholar
[3]
K. Wiedner, C. Naisse, C. Rumpel, A. Pozzi, P. Wieczorek, B. Glaser, Chemical modification of biomass residues during hydrothermal carbonization-What makes the difference, temperature or feedstock? , Org. Geochem. 54 (2013) 91-100.
DOI: 10.1016/j.orggeochem.2012.10.006
Google Scholar
[4]
M.T. Reza, W. Becker, K. Sachsenheimer, J. Mumme, Hydrothermal carbonization (HTC): near infrared spectroscopy and partial least-squares regression for determination of selective components in HTC solid and liquid products derived from maize silage, Bioresour. Technol. 161 (2014).
DOI: 10.1016/j.biortech.2014.03.008
Google Scholar
[5]
S.K. Hoekman, A. Broch, C. Robbins, Hydrothermal Carbonization (HTC) of Lignocellulosic Biomass, Energ. Fuel 25 (2011) 1802-1810.
DOI: 10.1021/ef101745n
Google Scholar
[6]
M. Pala, I.C. Kantarli, H.B. Buyukisik, J. Yanik, Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation, Bioresour. Technol. 161 (2014) 255-262.
DOI: 10.1016/j.biortech.2014.03.052
Google Scholar
[7]
L. Li, R. Diederick, R.V. Joseph, N.D. Berge, Hydrothermal carbonization of food waste and associated packaging materials for energy source generation, Waste Manage. 33 (2013) 2478-2492.
DOI: 10.1016/j.wasman.2013.05.025
Google Scholar
[8]
G.K. Parshetti, S. K Hoekman, R. Balasubramanian, Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches, Bioresour. Technol. 135 (2013) 683-689.
DOI: 10.1016/j.biortech.2012.09.042
Google Scholar
[9]
M. Seggiani, S. Vitolo, M. Pastorelli, P. Ghetti, Combustion reactivity of different oil-fired fly ashes as received and leached, Fuel 86 (2007) 1885-1891.
DOI: 10.1016/j.fuel.2006.12.010
Google Scholar
[10]
A. Melgar, J.F. Pérez, H. Laget, A. Horillo, Thermochemical equilibrium modeling of a gasifying process, Energy Convers. Manage. 48 (2007) 59–67.
DOI: 10.1016/j.enconman.2006.05.004
Google Scholar
[11]
A. Funke, F. Reebs, A. Kruse, Experimental comparison of hydrothermal and vapothermal carbonization, Fuel Process. Technol. 115 (2013) 261-269.
DOI: 10.1016/j.fuproc.2013.04.020
Google Scholar
[12]
M.D. Shawa, C. Karunakaran, L.G. Tabil, Physicochemical characteristics of densified untreated and steam exploded poplar wood and wheat straw grinds, Biosyst. Eng. 103 (2009) 198-207.
DOI: 10.1016/j.biosystemseng.2009.02.012
Google Scholar
[13]
D.W. Van Krevelen, Graphical–statistical method for the study of structure and reaction processes of coal, Fuel 29 (1950) 269–284.
Google Scholar
[14]
A.B. Fuertes, M.C. Arbestain, M. Sevilla, J.A. Macia-Agullo, S. Fiol, R. Lopez, R.J. Smernik, W.P. Aitkenhead, F. Arce, F. Macias, Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover, Aust. J. Soil Res. 48 (2010).
DOI: 10.1071/sr10010
Google Scholar
[15]
N.D. Berge, K.S. Ro, J. Mao, J.R. Flora, M.A. Chappell, S. Bae, Hydrothermal carbonization of municipal waste streams, Environ. Sci. Technol. 45 (2011) 5696-5703.
DOI: 10.1021/es2004528
Google Scholar
[16]
Z.G. Liu, R. Balasubramanian. A comparison of thermal behaviors of raw biomass, pyrolytic biochar and their blends with lignite, Bioresour. Technol. 146 (2013) 371-378.
DOI: 10.1016/j.biortech.2013.07.072
Google Scholar
[17]
Z.G. Liu, F.S. Zhang. Removal of lead from water using hydrochars prepared from hydrothermal liquefaction of biomass, J. Hazard. Mater. 167 (2009) 933–939.
DOI: 10.1016/j.jhazmat.2009.01.085
Google Scholar
[18]
B.M. Jenkins, L.L. Baxter, T.R. Miles Jr., T.R. Miles, Combustion properties of biomass, Fuel Process. Technol. 54 (1998) 17-46.
DOI: 10.1016/s0378-3820(97)00059-3
Google Scholar
[19]
J.J. Dai, S. Sokhansanj, J.R. Grace, X. Bi, C.J. Lim, S. Melin, Overview and some issues related to co-firing biomass and coal, Can. J. Chem. Eng. 86 (2008) 367-386.
DOI: 10.1002/cjce.20052
Google Scholar
[20]
Z.G. Liu, A. Quek, S.K. Hoekman, R. Balasubramanian. Production of solid hydrochar fuel from waste biomass by hydrothermal carbonization, Fuel 103 (2013) 943-949.
DOI: 10.1016/j.fuel.2012.07.069
Google Scholar
[21]
X.G. Li, Y.L. Ma, S.W. Jian, H.B. Tan, Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal, Bioresour. Technol. 102 (2011) 9783-9787.
DOI: 10.1016/j.biortech.2011.07.117
Google Scholar
[22]
Z.G. Liu, A. Quek, S.K. Hoekman, M.P. Srinvasan, R. Balasubramanian, Thermogravimetic investigation of hydrochar-lignite co-combustion, Bioresour. Technol. 123 (2012) 371-378.
DOI: 10.1016/j.biortech.2012.06.063
Google Scholar
[23]
A. Demirbas, Combustion characteristics of different biomass fuels, Prog. Energy. Combust. Sci. 30 (2004) 219-230.
Google Scholar
[24]
A.A. Tortosa Masia, B.J.P. Blugre, R.P. Gupta, T.F. Wall, Characterising ash of biomass and waste, Fuel Process. Technol. 88 (2007) 1071-1081.
DOI: 10.1016/j.fuproc.2007.06.011
Google Scholar