Preparation of Solid Fuel Hydrochars from Waste Biomass by Hydrothermal Carbonization

Article Preview

Abstract:

Coconut fiber (CF) and eucalyptus leaves (EL) were upgraded by hydrothermal carbonization (HTC) and fuel qualities of corresponding hydrochars were determined in the present study. Compared to raw biomass, the hydrochars have increased energy density, and the decreased nitrogen and sulfur contents showed that reduced pollutant emissions are produced during hydrochar combustion. The ignition temperatures of hydrochars were higher and the combustion also shifted to higher temperature ranges. In addition, HTC significantly reduced the slagging and fouling tendencies of raw biomass and the fouling index of CF and EL changed from 2.59 to 0.09 and 1.11 to 0.24, respectively. This study demonstrated that solid fuel with high quality can be produced by HTC and improved thermal efficiency and environmental benefits can be achieved by hydrochar combustion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-81

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.T. Reza, B. Wirth, U. Lüder, M. Werner, Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass, Bioresour. Technol. 169 (2014) 352-361.

DOI: 10.1016/j.biortech.2014.07.010

Google Scholar

[2] M.T. Reza, M.H. Uddin, J.G. Lynam, S.K. Hoekmann, C.J. Coronella, Hydrothermal carbonization: Fate of inorganics, Biomass Bioenerg. 49 (2013) 86-94.

DOI: 10.1016/j.biombioe.2012.12.004

Google Scholar

[3] K. Wiedner, C. Naisse, C. Rumpel, A. Pozzi, P. Wieczorek, B. Glaser, Chemical modification of biomass residues during hydrothermal carbonization-What makes the difference, temperature or feedstock? , Org. Geochem. 54 (2013) 91-100.

DOI: 10.1016/j.orggeochem.2012.10.006

Google Scholar

[4] M.T. Reza, W. Becker, K. Sachsenheimer, J. Mumme, Hydrothermal carbonization (HTC): near infrared spectroscopy and partial least-squares regression for determination of selective components in HTC solid and liquid products derived from maize silage, Bioresour. Technol. 161 (2014).

DOI: 10.1016/j.biortech.2014.03.008

Google Scholar

[5] S.K. Hoekman, A. Broch, C. Robbins, Hydrothermal Carbonization (HTC) of Lignocellulosic Biomass, Energ. Fuel 25 (2011) 1802-1810.

DOI: 10.1021/ef101745n

Google Scholar

[6] M. Pala, I.C. Kantarli, H.B. Buyukisik, J. Yanik, Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation, Bioresour. Technol. 161 (2014) 255-262.

DOI: 10.1016/j.biortech.2014.03.052

Google Scholar

[7] L. Li, R. Diederick, R.V. Joseph, N.D. Berge, Hydrothermal carbonization of food waste and associated packaging materials for energy source generation, Waste Manage. 33 (2013) 2478-2492.

DOI: 10.1016/j.wasman.2013.05.025

Google Scholar

[8] G.K. Parshetti, S. K Hoekman, R. Balasubramanian, Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches, Bioresour. Technol. 135 (2013) 683-689.

DOI: 10.1016/j.biortech.2012.09.042

Google Scholar

[9] M. Seggiani, S. Vitolo, M. Pastorelli, P. Ghetti, Combustion reactivity of different oil-fired fly ashes as received and leached, Fuel 86 (2007) 1885-1891.

DOI: 10.1016/j.fuel.2006.12.010

Google Scholar

[10] A. Melgar, J.F. Pérez, H. Laget, A. Horillo, Thermochemical equilibrium modeling of a gasifying process, Energy Convers. Manage. 48 (2007) 59–67.

DOI: 10.1016/j.enconman.2006.05.004

Google Scholar

[11] A. Funke, F. Reebs, A. Kruse, Experimental comparison of hydrothermal and vapothermal carbonization, Fuel Process. Technol. 115 (2013) 261-269.

DOI: 10.1016/j.fuproc.2013.04.020

Google Scholar

[12] M.D. Shawa, C. Karunakaran, L.G. Tabil, Physicochemical characteristics of densified untreated and steam exploded poplar wood and wheat straw grinds, Biosyst. Eng. 103 (2009) 198-207.

DOI: 10.1016/j.biosystemseng.2009.02.012

Google Scholar

[13] D.W. Van Krevelen, Graphical–statistical method for the study of structure and reaction processes of coal, Fuel 29 (1950) 269–284.

Google Scholar

[14] A.B. Fuertes, M.C. Arbestain, M. Sevilla, J.A. Macia-Agullo, S. Fiol, R. Lopez, R.J. Smernik, W.P. Aitkenhead, F. Arce, F. Macias, Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover, Aust. J. Soil Res. 48 (2010).

DOI: 10.1071/sr10010

Google Scholar

[15] N.D. Berge, K.S. Ro, J. Mao, J.R. Flora, M.A. Chappell, S. Bae, Hydrothermal carbonization of municipal waste streams, Environ. Sci. Technol. 45 (2011) 5696-5703.

DOI: 10.1021/es2004528

Google Scholar

[16] Z.G. Liu, R. Balasubramanian. A comparison of thermal behaviors of raw biomass, pyrolytic biochar and their blends with lignite, Bioresour. Technol. 146 (2013) 371-378.

DOI: 10.1016/j.biortech.2013.07.072

Google Scholar

[17] Z.G. Liu, F.S. Zhang. Removal of lead from water using hydrochars prepared from hydrothermal liquefaction of biomass, J. Hazard. Mater. 167 (2009) 933–939.

DOI: 10.1016/j.jhazmat.2009.01.085

Google Scholar

[18] B.M. Jenkins, L.L. Baxter, T.R. Miles Jr., T.R. Miles, Combustion properties of biomass, Fuel Process. Technol. 54 (1998) 17-46.

DOI: 10.1016/s0378-3820(97)00059-3

Google Scholar

[19] J.J. Dai, S. Sokhansanj, J.R. Grace, X. Bi, C.J. Lim, S. Melin, Overview and some issues related to co-firing biomass and coal, Can. J. Chem. Eng. 86 (2008) 367-386.

DOI: 10.1002/cjce.20052

Google Scholar

[20] Z.G. Liu, A. Quek, S.K. Hoekman, R. Balasubramanian. Production of solid hydrochar fuel from waste biomass by hydrothermal carbonization, Fuel 103 (2013) 943-949.

DOI: 10.1016/j.fuel.2012.07.069

Google Scholar

[21] X.G. Li, Y.L. Ma, S.W. Jian, H.B. Tan, Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal, Bioresour. Technol. 102 (2011) 9783-9787.

DOI: 10.1016/j.biortech.2011.07.117

Google Scholar

[22] Z.G. Liu, A. Quek, S.K. Hoekman, M.P. Srinvasan, R. Balasubramanian, Thermogravimetic investigation of hydrochar-lignite co-combustion, Bioresour. Technol. 123 (2012) 371-378.

DOI: 10.1016/j.biortech.2012.06.063

Google Scholar

[23] A. Demirbas, Combustion characteristics of different biomass fuels, Prog. Energy. Combust. Sci. 30 (2004) 219-230.

Google Scholar

[24] A.A. Tortosa Masia, B.J.P. Blugre, R.P. Gupta, T.F. Wall, Characterising ash of biomass and waste, Fuel Process. Technol. 88 (2007) 1071-1081.

DOI: 10.1016/j.fuproc.2007.06.011

Google Scholar