[1]
R.C. Soong, S.L. Wu, , J.M. Lee, An electric wheelchair with function of climbing up and down a step, J. Applied Mechanics and Materials. 479-480 (2014) 304-308.
DOI: 10.4028/www.scientific.net/amm.479-480.304
Google Scholar
[2]
H.P. Phuc, V.D. Dzung, A micro gearing system based on a ratchet mechanism and electrostatic actuation, J. Microsystem Technologies. 19(2) (2013) 261-267.
DOI: 10.1007/s00542-012-1625-7
Google Scholar
[3]
T. Ho, S. Lee, Design of a piezoelectrically actuated jumping robot, J. Advanced Materials Research. 311-313 (2011) 2211-2214.
DOI: 10.4028/www.scientific.net/amr.311-313.2211
Google Scholar
[4]
V.P. Bondaletov, Ratchet mechanisms for high-speed transmissions, J. Russian Engineering Research. 28(9) (2008) 845-848.
DOI: 10.3103/s1068798x08090025
Google Scholar
[5]
N. Sclater, N.P. Chironis, Mechanisms and mechanical devices sourcebook, McGraw Hill Professional, New York, (2006).
Google Scholar
[6]
C. Xiaoxia, L. Yusheng, X. Jingzhong, L. Shuzhong, X. Wei, The parametric design of double-circular-arc tooth profile and its influence on the functional backlash of harmonic drive, J. Mechanism and Machine Theory. 73 (2014) 1-24.
DOI: 10.1016/j.mechmachtheory.2013.10.003
Google Scholar
[7]
W.C. Yi, B.Y. Wang, S. He, Tooth profile generation of point-contact involute planetary gear drive with small teeth difference, J. Applied Mechanics and Materials. 441 (2014) 561-567.
DOI: 10.4028/www.scientific.net/amm.441.561
Google Scholar
[8]
C. Fetvaci, Computerised tooth profile generation of conjugated involute internal gears, Key Engineering Materials. 572(1) (2014) 355-358.
DOI: 10.4028/www.scientific.net/kem.572.355
Google Scholar
[9]
C. Lin, L. Zhang, Z. Zhang, Transmission theory and tooth surface solution of a new type of non-circular bevel gears, J. Chinese Journal of Mechanical Engineering. 50(13) (2014) 66-72.
DOI: 10.3901/jme.2014.13.066
Google Scholar
[10]
S.P. Radzevich, Theory of Gearing: Kinematics, Geometry, and Synthesis, CRC Press, Boca Raton, (2012).
Google Scholar