A Gyroscopic Damper System – A Damping Control with New Performance

Article Preview

Abstract:

A new approach substitutes the damper of a passenger car by a cardanic gimbaled flywheel mass. The constructive design leads to a rotary damper in which the vertical movement of the wheel carrier leads to revolution of the rotational axis of the flywheel. In this arrangement, the occurring precession moments are used to control damping moments and to store vibration energy. Different damper characteristics are achieved by different velocities of the inner ring. From almost zero torque output to high torque output, this damper has a huge spread. In this paper a control concept for a LQR is presented. The objective of the control is an adequate motion of the gyroscope to a desired damping characteristic of a passenger car.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

178-182

Citation:

Online since:

July 2015

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Zuo, P. -S. Zhang: Energy Harvesting, Ride Comfort and Road Handling of Energy Regenerative Vehicle Suspensions, Proceedings of 2011 ASME Vehicle Dynamic Systems and Control Conference, USA (2011).

DOI: 10.1115/dscc2011-6184

Google Scholar

[2] M. Willems: Potenzialabschätzung zur Rekuperation der Stossdämpferenergie, ATZ 09|2012, 114. Jahrgang, Germany (2012).

DOI: 10.1007/s35148-012-0451-7

Google Scholar

[3] Z. Li, L. Zuo, J. Kuang, L. George: Energy Harvesting Damper with a Mechanical Motion Rectifier, Smart Materials and Structures 21 December (2012).

Google Scholar

[4] F. Salcedo, P. Ruiz-Minguela, R. Rodriguez, et. al.: Oceantec: Sea Trials of a Quarter Scale Prototype, Proceedings of 8th European Wave Tidal Energy Conference, Sweden (2009).

Google Scholar

[5] O. Nishihara, H. Matsuhisa: Design Optimization of Passive Gyroscopic Damper, (JSME International Journal, Series C, Vol. 40, No. 4 (1997).

DOI: 10.1299/jsmec.40.643

Google Scholar

[6] H. Haghighi, M. Jahed-Motlagh: Ship Roll Stabilization via Sliding Mode Control and Gyrostabilizer, Bul. Inst. Polit. Iasi, LVIII (2012).

Google Scholar

[7] D. Schramm, M. Hiller, R. Bardini: Modellbildung und Simulation der Dynamik von Kraftfahrzeugen, Springer Vieweg (2013).

DOI: 10.1007/978-3-642-33888-5

Google Scholar

[8] B. Assmann, P. Selke: Technische Mechanik 3, Oldenbourg Verlag München Wien (2007).

Google Scholar

[9] A.S. Chandak, A.J. Patil: Robust LQR Control Design of Gyroscope, International Journal of Advanced Computer Research, Volume-3 Number-1 Issue-9 (2013).

Google Scholar

[10] B. Heißing, M. Ersoy, S. Gies: Fahrwerkhandbuch, Vieweg und Teubner (2011).

Google Scholar

[11] B. Scheurich, T. Koch, M. Frey, F. Gauterin: A Gyroscopic Damper System – Damping with New Characteristics, 23th Aachener Colloquium (2014).

Google Scholar