Solution of Non-Fourier Temperature Field in a Hollow Sphere under Harmonic Boundary Condition

Article Preview

Abstract:

Analytical solution of the axisymmetric two-dimensional non-Fourier temperature field within a hollow sphere is investigated considering Cattaneo-Vernotte constitutive equation with general time-dependent heat flux. The material is assumed to be homogeneous and isotropic with temperature-independent thermal properties. The method of solution is the standard separation of variables method. Duhamel integral is used for applying the time-dependent boundary conditions. The presented solution is applied to special case of harmonic heat flux on outer surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-203

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Cattaneo: Sur uneforme de l'equation de la chaleurelinant le paradoxed'une propagation instantance. 2. C. R. Acad. Sci. 247, 431-432 (1958).

Google Scholar

[2] P. Vernotte: Les paradoxes de la theorie continue de l'equation de la chaleur. C. R. Acad. Sci. vol. 246(1958), pp.3154-3155.

Google Scholar

[3] K.J. Baumeister and T.D. Hamill: Hyperbolic heat conduction equation-a solution for the semi-infinite body problem, J Heat Transfer. Vol. 91(1969), pp.543-548.

DOI: 10.1115/1.3580239

Google Scholar

[4] K.J. Baumeister and T.D. Hamill: Hyperbolic heat conduction equation-a solution for the semi-infinite body problem, J Heat Transfer. Vol. 93(1971), pp.126-127.

DOI: 10.1115/1.3449749

Google Scholar

[5] J. Gembarovic and V. Majernik: Non-Fourier propagation of heat pulses in finite medium, Int. J Heat Mass Transfer. Vol. 31 (1988), pp.1073-1080.

DOI: 10.1016/0017-9310(88)90095-6

Google Scholar

[6] D.W. Tang and N. Araki: Non-Fourier heat conduction in a finite medium under periodic surface thermal disturbance. Int. J. Heat Mass Transfer. Vol. 39(1996), pp.1585-1590.

DOI: 10.1016/0017-9310(95)00261-8

Google Scholar

[7] D.W. Tang and N. Araki: Non-Fourier heat conduction in a finite medium under periodic surface thermal disturbance-II. Another form of solution. Int. J. Heat Mass Transfer. Vol. 39(1996), pp.3305-3308.

DOI: 10.1016/0017-9310(95)00411-4

Google Scholar

[8] D.W. Tang and N. Araki: Analytical solution of non-Fourier temperature response in a finite medium under laser-pulse heating. Heat Mass Transfer. Vol. 31 (1996), pp.359-363.

DOI: 10.1007/bf02184051

Google Scholar

[9] D.W. Tang and N. Araki: Non-Fourier heat conduction behavior in finite mediums under pulse surface heating. Material Science and Engineering A. vol. 292(2000), pp.173-178.

DOI: 10.1016/s0921-5093(00)01000-5

Google Scholar

[10] M. Lewandowska and L. Malinowski: Hyperbolic heat conduction in the semi-infinite body with the heat source which capacity linearly depends on temperature, Heat and Mass Transfer, vol. 33(1998), pp.389-393.

DOI: 10.1007/s002310050206

Google Scholar

[11] . M. Lewandowska and L. Malinowski: An analytical solution of the hyperbolic heat conduction equation for the case of a finite medium symmetrically heated on both sides, International Communications in Heat and Mass Transfer. Vol. 33(2006).

DOI: 10.1016/j.icheatmasstransfer.2005.08.004

Google Scholar

[12] 12. B. Abdel-Hamid: Modeling non-Fourier heat conduction with periodic thermal oscillation using the finite integral transform. Appl. Math. Model. Vol. 23(1999), pp.899-914.

DOI: 10.1016/s0307-904x(99)00017-7

Google Scholar

[13] A. Moosaie: Non-Fourier heat conduction in a finite medium subjected to arbitrary periodic surface disturbance. Int. Communication in Heat mass Transfer. Vol. 34(2007), pp.996-1002.

DOI: 10.1016/j.icheatmasstransfer.2007.05.002

Google Scholar

[14] A. Moosaie: Non-Fourier heat conduction in a finite medium subjected to arbitrary non-periodic surface disturbance. Int. Communication in Heat mass Transfer. Vol. 35 (2008), pp.376-383.

DOI: 10.1016/j.icheatmasstransfer.2007.08.007

Google Scholar

[15] M.H. Babaei and Z.T. Chen: Hyperbolic heat conduction problem in a functionally graded hollow sphere, Int. J Thermophysics. 29, 1457-1469 (2008).

DOI: 10.1007/s10765-008-0502-1

Google Scholar

[16] Z. Zhang and D. Liu: Hyperbolic heat propagation in a spherical solid medium under extremely high heating rates, Armaly B. F et al. (eds). AIAA/ASME joint thermophysics and heat transfer conference, Vol. 3(1998), New York, pp.275-283.

Google Scholar

[17] F. Jiang: Solution and analysis of hyperbolic heat propagation in hollow spherical objects. Heat Mass Transfer. Vol. 42(2006), pp.1083-1091.

DOI: 10.1007/s00231-005-0066-6

Google Scholar

[18] A. Moosaie: Axisymmetric non-Fourier temperature field in a hollow sphere, Arch ApplMech, vol. 79(2009), pp.679-694.

DOI: 10.1007/s00419-008-0245-2

Google Scholar

[19] H. Pourmohamadian and H. BasiratTabrizi: Transient heat conduction for micro sphere, Proceedings of the 4th WSEAS international conference on heat and mass transfer, Gold coast, Queensland, Australia, January 17-19 (2007).

Google Scholar

[20] R. Shirmohammadi and A. Moosaie: Non-Fourier heat conduction in a hollow sphere with periodic surface heat flux, Int. Communication in Heat mass Transfer. Vol. 36(2009), pp.827-833.

DOI: 10.1016/j.icheatmasstransfer.2009.05.002

Google Scholar

[21] V.S. Arpaci: Conduction Heat Transfer, University of Michigan (1966), Chapter 5.

Google Scholar