[1]
C. Cattaneo: Sur uneforme de l'equation de la chaleurelinant le paradoxed'une propagation instantance. 2. C. R. Acad. Sci. 247, 431-432 (1958).
Google Scholar
[2]
P. Vernotte: Les paradoxes de la theorie continue de l'equation de la chaleur. C. R. Acad. Sci. vol. 246(1958), pp.3154-3155.
Google Scholar
[3]
K.J. Baumeister and T.D. Hamill: Hyperbolic heat conduction equation-a solution for the semi-infinite body problem, J Heat Transfer. Vol. 91(1969), pp.543-548.
DOI: 10.1115/1.3580239
Google Scholar
[4]
K.J. Baumeister and T.D. Hamill: Hyperbolic heat conduction equation-a solution for the semi-infinite body problem, J Heat Transfer. Vol. 93(1971), pp.126-127.
DOI: 10.1115/1.3449749
Google Scholar
[5]
J. Gembarovic and V. Majernik: Non-Fourier propagation of heat pulses in finite medium, Int. J Heat Mass Transfer. Vol. 31 (1988), pp.1073-1080.
DOI: 10.1016/0017-9310(88)90095-6
Google Scholar
[6]
D.W. Tang and N. Araki: Non-Fourier heat conduction in a finite medium under periodic surface thermal disturbance. Int. J. Heat Mass Transfer. Vol. 39(1996), pp.1585-1590.
DOI: 10.1016/0017-9310(95)00261-8
Google Scholar
[7]
D.W. Tang and N. Araki: Non-Fourier heat conduction in a finite medium under periodic surface thermal disturbance-II. Another form of solution. Int. J. Heat Mass Transfer. Vol. 39(1996), pp.3305-3308.
DOI: 10.1016/0017-9310(95)00411-4
Google Scholar
[8]
D.W. Tang and N. Araki: Analytical solution of non-Fourier temperature response in a finite medium under laser-pulse heating. Heat Mass Transfer. Vol. 31 (1996), pp.359-363.
DOI: 10.1007/bf02184051
Google Scholar
[9]
D.W. Tang and N. Araki: Non-Fourier heat conduction behavior in finite mediums under pulse surface heating. Material Science and Engineering A. vol. 292(2000), pp.173-178.
DOI: 10.1016/s0921-5093(00)01000-5
Google Scholar
[10]
M. Lewandowska and L. Malinowski: Hyperbolic heat conduction in the semi-infinite body with the heat source which capacity linearly depends on temperature, Heat and Mass Transfer, vol. 33(1998), pp.389-393.
DOI: 10.1007/s002310050206
Google Scholar
[11]
. M. Lewandowska and L. Malinowski: An analytical solution of the hyperbolic heat conduction equation for the case of a finite medium symmetrically heated on both sides, International Communications in Heat and Mass Transfer. Vol. 33(2006).
DOI: 10.1016/j.icheatmasstransfer.2005.08.004
Google Scholar
[12]
12. B. Abdel-Hamid: Modeling non-Fourier heat conduction with periodic thermal oscillation using the finite integral transform. Appl. Math. Model. Vol. 23(1999), pp.899-914.
DOI: 10.1016/s0307-904x(99)00017-7
Google Scholar
[13]
A. Moosaie: Non-Fourier heat conduction in a finite medium subjected to arbitrary periodic surface disturbance. Int. Communication in Heat mass Transfer. Vol. 34(2007), pp.996-1002.
DOI: 10.1016/j.icheatmasstransfer.2007.05.002
Google Scholar
[14]
A. Moosaie: Non-Fourier heat conduction in a finite medium subjected to arbitrary non-periodic surface disturbance. Int. Communication in Heat mass Transfer. Vol. 35 (2008), pp.376-383.
DOI: 10.1016/j.icheatmasstransfer.2007.08.007
Google Scholar
[15]
M.H. Babaei and Z.T. Chen: Hyperbolic heat conduction problem in a functionally graded hollow sphere, Int. J Thermophysics. 29, 1457-1469 (2008).
DOI: 10.1007/s10765-008-0502-1
Google Scholar
[16]
Z. Zhang and D. Liu: Hyperbolic heat propagation in a spherical solid medium under extremely high heating rates, Armaly B. F et al. (eds). AIAA/ASME joint thermophysics and heat transfer conference, Vol. 3(1998), New York, pp.275-283.
Google Scholar
[17]
F. Jiang: Solution and analysis of hyperbolic heat propagation in hollow spherical objects. Heat Mass Transfer. Vol. 42(2006), pp.1083-1091.
DOI: 10.1007/s00231-005-0066-6
Google Scholar
[18]
A. Moosaie: Axisymmetric non-Fourier temperature field in a hollow sphere, Arch ApplMech, vol. 79(2009), pp.679-694.
DOI: 10.1007/s00419-008-0245-2
Google Scholar
[19]
H. Pourmohamadian and H. BasiratTabrizi: Transient heat conduction for micro sphere, Proceedings of the 4th WSEAS international conference on heat and mass transfer, Gold coast, Queensland, Australia, January 17-19 (2007).
Google Scholar
[20]
R. Shirmohammadi and A. Moosaie: Non-Fourier heat conduction in a hollow sphere with periodic surface heat flux, Int. Communication in Heat mass Transfer. Vol. 36(2009), pp.827-833.
DOI: 10.1016/j.icheatmasstransfer.2009.05.002
Google Scholar
[21]
V.S. Arpaci: Conduction Heat Transfer, University of Michigan (1966), Chapter 5.
Google Scholar