Characterization of the Thin Films Structures in Subwavelength Regime as Biosensing Materials

Article Preview

Abstract:

Zinc oxide nanostructured materials, such as films and nanoparticles, could provide a suitable platform for development of high performance biosensing material due to their unique fundamental material properties. This paper presents the characterization of ZnO thin film as biosensing material by metallic strip grating structure (MSG), for the real-time detection. In this work, high quality ZnO films were grown on ITO/glass substrates by vacuum thermal evaporation method. We characterized by X-ray diffraction (XRD) the film crystalline quality and by scanning electron microscopy (SEM) the film morphology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-66

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.P. Norton, Y.W. Heo, M.P. Ivill, S.J. Pearton, M.F. Chisholm and T. Steiner, Mater. Today, Vol. 7 (2004), p.34–40.

DOI: 10.1016/s1369-7021(04)00287-1

Google Scholar

[2] X.W. Sun and H.S. Kwok, J. Appl. Phys., Vol. 86 (1999), p.408–411.

Google Scholar

[3] K.H. Yoon, J.W. Choi and D.H. Lee, Thin Solid Films, Vol. 302 (1997), pp.116-121.

Google Scholar

[4] A.P. Rambu, D. Sirbu, N. Iftimie and G.I. Rusu, Thin Solid Films, Vol. 520, No. 4 (2011), pp.1303-1307.

DOI: 10.1016/j.tsf.2011.04.158

Google Scholar

[5] A.P. Rambu, V. Tiron, V. Nica and N. Iftimie, J. Appl. Phys., Vol. 113: 234506 (2013).

Google Scholar

[6] Y.E. Lee, J.B. Lee, Y.J. Kim, H.K. Yang, J.C. Park and H.J. Kim, J. Vac. Sci. Technol. A 14, 1943 (1996).

Google Scholar

[7] Z.R.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie and M.J. Mcdermott, J. Am. Chem. Soc., Vol. 124 (2002), p.12954–12955.

Google Scholar

[8] J.B. Pendry, A.J. Holden, W.J. Stewart and I. Youngs, Phys. Rev. Lett., Vol. 76 (1996), pp.4773-4776.

DOI: 10.1103/physrevlett.76.4773

Google Scholar

[9] A. Savin, R. Steigmann and A. Bruma, Sensors, Vol. 14 (2014), pp.11786-11804.

DOI: 10.3390/s140711786

Google Scholar

[10] M. Born and E. Wolf: Principle of Optics, 5th ed, Pergamon, Oxford, (1975).

Google Scholar

[11] J.A. Kong, Electromagnetic wave theory, EMW, Cambridge, MA, (2000).

Google Scholar

[12] K.S. Kunz and R.J. Luebbers: The Finite Difference Time Domain Method for Electromagnetics, Boca Raton, FL: CRC Press, (1993).

Google Scholar

[13] R. Grimberg, A. Savin and R. Steigmann, NDT&E International, Vol. 46 (2012), pp.70-76.

Google Scholar

[14] R. Grimberg, Mater. Sci. Eng. B, Vol. 178 (2013), pp.1285-1295.

Google Scholar

[15] A. Lagendijk, B. Van Tiggelen and D.S. Wiersma, Physics Today, (2009), pp.24-29.

Google Scholar

[16] A. Savin, R. Steigmann, patent RO129801-A0 , (2014).

Google Scholar

[17] R. Grimberg, A. Savin, E. Radu and O. Mihalache, IEEE Transactions on Magnetics, Vol. 36(1) (2000), pp.299-307.

Google Scholar

[18] R. Grimberg, A. Savin, R. Steigmann, B. Serghiac, A. Bruma, INSIGHT, (2011), Vol. 53(3) (2011), pp.132-137.

DOI: 10.1784/insi.2011.53.3.132

Google Scholar