[1]
T. Y. Ng , J. Yeo , Z. Liu, Molecular dynamics simulation of the thermal conductivity of short strips of graphene and silicene: a comparative study, Int J Mech Mater Des (2013), 9; 105-114.
DOI: 10.1007/s10999-013-9215-0
Google Scholar
[2]
S. Trivedi, A. Srivastava, and R. Kurchania, Journal of Computational and Theoretical Nanoscience Vol. 11 (2014), 1–8.
Google Scholar
[3]
Y. Wang,J. Zheng,Z. Ni et al., Half-Metallic Silicene and Germanene Nanoribbons: towards High-Performance Spintronics Device, p.2.
DOI: 10.1142/s1793292012500373
Google Scholar
[4]
F. Bechstedt, L. Matthes, P. Gori and O. Pulci, Applied Physics Letter 100, 261906 (2012), p.1.
Google Scholar
[5]
J. Yan, R. Stein, D.M. Schaefer, Xiao-Qian Wang, and M. Y. Chou, Electron- Phonon Coupling in Two-Dimensional Silicene and Germanene, August 22, (2012).
DOI: 10.1103/physrevb.88.121403
Google Scholar
[6]
Z. Ni, Q. Liu, K. Tang, J. Zheng et al., Tunable Bandgap in Silicene and Germanene, Nano Letters 2012, 12, 113–118.
DOI: 10.1021/nl203065e
Google Scholar
[7]
G. Baskaran, Room Temperature Superconductivity, Spin Liquid and Mott Insulator: Silicene and Germanene as prospective playgrounds, September 10, (2012).
Google Scholar
[8]
K. Yang, S. Cahangirov, A. Cantarero, A. Rubio, and R. D'Agosta1, Thermoelectric properties of atomic-thin silicene and germanene nano-structures, October 03, (2013).
Google Scholar
[9]
M. Houssaa, B. van den Broeka, E. Scalisea, G. Pourtoisb, V. V Afanas'eva, and A. Stesmansa, Theoretical Study of Silicene and Germanene, ECS Transactions, 53 (1) 51-62 (2013).
Google Scholar
[10]
J. Tersoff: Phys. Rev. B Vol. 37 (1988).
Google Scholar
[11]
Information on http: /www. fisica. uniud. it/~ercolessi/md/node51. html.
Google Scholar
[12]
S. Plimpton, Fast Parallel Algorithms for short-range molecualar dynamics, J. Comp. Phys. Vol. 117 (1995).
Google Scholar
[13]
H. Sahin et al., Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations, Physical Review B 80, 155453 (2009) p.3.
DOI: 10.1103/physrevb.80.155453
Google Scholar
[14]
Q. Spreiter and M. Walter, Classical molecular dynamics simulation with the velocity verlet algorithm at strong external magnetic field (1998).
DOI: 10.1006/jcph.1999.6237
Google Scholar
[15]
W. G. Hoover, Time Reversibility, Computer Simulation and Chaos, World Scientific, (1999).
Google Scholar
[16]
P.H. Hnenberger, Thermostat algorithms for molecular dynamics simulations, Advance Polymer Science, 173, 105-149 (2005).
Google Scholar
[17]
M. Hu, X. Zhang and D. Poulikak, Anomalous thermal response of silicene to uniaxial stretching, Physical Review B 87, 195417 (2013).
Google Scholar
[18]
K. Zberecki, M. Wierzbicki, J. Barnaś, R. Swirkowicz, Thermoelectric effects in silicene nanoribbons, July 15, (2013).
DOI: 10.1103/physrevb.88.115404
Google Scholar
[19]
Yu. A. Kosevich and A. V. Savin , Reduction of phonon thermal conductivity in nanowires and nanoribbons with dynamically rough surfaces and edges, 2009 EPL 88 14002.
DOI: 10.1209/0295-5075/88/14002
Google Scholar
[20]
L. Pan, H. J. Lui, X. J. Tan, H.Y. Lv, J. Shi, J. F. Tang, G. Zheng, Thermoelectric properties of armchair and zigzag silicene nanoribbons, Physical Chemisty Chemical Physics 14(39), September (2012).
DOI: 10.1039/c2cp42645e
Google Scholar
[21]
J. Che, T. Cagın and W. A. Goddard III, Thermal conductivity of carbon nanotubes, Nanotechnology 11 (2000) 65–69.
Google Scholar
[22]
Zhixin Guo, Dier Zhang, and Xin-Gao Gong, Thermal conductivity of graphene nanoribbons, Applied Physics Letters 95, 163103 (2009).
Google Scholar
[23]
G. Rangrajan, Lattice vibrations(continued) Phonon thermal conductivity-worked examples, Condensed matter physics.
Google Scholar
[24]
X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qin, and G. Su, Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential, Physical Review B 89, 054310(2014).
DOI: 10.1103/physrevb.89.054310
Google Scholar
[25]
Wei-Rong Zhong, Mao-Ping Zhang, Bao-Quan Ai and Dong-Qin Zheng, Chirality– and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study, Applied Physics Letter 98, March 15, (2011).
DOI: 10.1063/1.3567415
Google Scholar
[26]
J. Hu, X. Ruan, Z. Jiang and Y. P. Chen, Molecular Dynamics Calculation of Thermal Conductivity of Graphene Nanoribbons, Nano Letters (2009).
Google Scholar