Molecular Dynamics Simulations of Thermal Conductivity of Germanene Nanoribbons (GeNR) with Armchair and Zigzag Chirality

Article Preview

Abstract:

Germanene, an allotrope of germanium which is a two dimensional material with sp2 hybridization, has almost the same properties with graphene except for its buckled structure. In this study, germanium nanoribbon (GeNR) is use for it is still a new material for nanoscale level of research. In this paper, we investigate the effect of chirality on the thermal conductivity of zigzag GeNR (ZGeNR) and armchair GeNR (AGeNR) chiralities using equilibrium molecular dynamics with varied lengths at fixed temperature and varied temperatures at fixed length. The simulations were carried out in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) using Tersoff potential for the Ge-Ge interactions. The thermal conductivity is calculated using Green-Kubo method. It is found that the chirality can affect the thermal conductivity of GeNR. Our results show that thermal conductivity of AGeNR is higher than ZGeNR in both increasing temperatures and lengths similar to the thermal conductivity behavior obtained in silicene nanoribbons [Int. J. Mech. Mater. Des. 9 (2013) 105].

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-71

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Y. Ng , J. Yeo , Z. Liu, Molecular dynamics simulation of the thermal conductivity of short strips of graphene and silicene: a comparative study, Int J Mech Mater Des (2013), 9; 105-114.

DOI: 10.1007/s10999-013-9215-0

Google Scholar

[2] S. Trivedi, A. Srivastava, and R. Kurchania, Journal of Computational and Theoretical Nanoscience Vol. 11 (2014), 1–8.

Google Scholar

[3] Y. Wang,J. Zheng,Z. Ni et al., Half-Metallic Silicene and Germanene Nanoribbons: towards High-Performance Spintronics Device, p.2.

DOI: 10.1142/s1793292012500373

Google Scholar

[4] F. Bechstedt, L. Matthes, P. Gori and O. Pulci, Applied Physics Letter 100, 261906 (2012), p.1.

Google Scholar

[5] J. Yan, R. Stein, D.M. Schaefer, Xiao-Qian Wang, and M. Y. Chou, Electron- Phonon Coupling in Two-Dimensional Silicene and Germanene, August 22, (2012).

DOI: 10.1103/physrevb.88.121403

Google Scholar

[6] Z. Ni, Q. Liu, K. Tang, J. Zheng et al., Tunable Bandgap in Silicene and Germanene, Nano Letters 2012, 12, 113–118.

DOI: 10.1021/nl203065e

Google Scholar

[7] G. Baskaran, Room Temperature Superconductivity, Spin Liquid and Mott Insulator: Silicene and Germanene as prospective playgrounds, September 10, (2012).

Google Scholar

[8] K. Yang, S. Cahangirov, A. Cantarero, A. Rubio, and R. D'Agosta1, Thermoelectric properties of atomic-thin silicene and germanene nano-structures, October 03, (2013).

Google Scholar

[9] M. Houssaa, B. van den Broeka, E. Scalisea, G. Pourtoisb, V. V Afanas'eva, and A. Stesmansa, Theoretical Study of Silicene and Germanene, ECS Transactions, 53 (1) 51-62 (2013).

Google Scholar

[10] J. Tersoff: Phys. Rev. B Vol. 37 (1988).

Google Scholar

[11] Information on http: /www. fisica. uniud. it/~ercolessi/md/node51. html.

Google Scholar

[12] S. Plimpton, Fast Parallel Algorithms for short-range molecualar dynamics, J. Comp. Phys. Vol. 117 (1995).

Google Scholar

[13] H. Sahin et al., Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations, Physical Review B 80, 155453 (2009) p.3.

DOI: 10.1103/physrevb.80.155453

Google Scholar

[14] Q. Spreiter and M. Walter, Classical molecular dynamics simulation with the velocity verlet algorithm at strong external magnetic field (1998).

DOI: 10.1006/jcph.1999.6237

Google Scholar

[15] W. G. Hoover, Time Reversibility, Computer Simulation and Chaos, World Scientific, (1999).

Google Scholar

[16] P.H. Hnenberger, Thermostat algorithms for molecular dynamics simulations, Advance Polymer Science, 173, 105-149 (2005).

Google Scholar

[17] M. Hu, X. Zhang and D. Poulikak, Anomalous thermal response of silicene to uniaxial stretching, Physical Review B 87, 195417 (2013).

Google Scholar

[18] K. Zberecki, M. Wierzbicki, J. Barnaś, R. Swirkowicz, Thermoelectric effects in silicene nanoribbons, July 15, (2013).

DOI: 10.1103/physrevb.88.115404

Google Scholar

[19] Yu. A. Kosevich and A. V. Savin , Reduction of phonon thermal conductivity in nanowires and nanoribbons with dynamically rough surfaces and edges, 2009 EPL 88 14002.

DOI: 10.1209/0295-5075/88/14002

Google Scholar

[20] L. Pan, H. J. Lui, X. J. Tan, H.Y. Lv, J. Shi, J. F. Tang, G. Zheng, Thermoelectric properties of armchair and zigzag silicene nanoribbons, Physical Chemisty Chemical Physics 14(39), September (2012).

DOI: 10.1039/c2cp42645e

Google Scholar

[21] J. Che, T. Cagın and W. A. Goddard III, Thermal conductivity of carbon nanotubes, Nanotechnology 11 (2000) 65–69.

Google Scholar

[22] Zhixin Guo, Dier Zhang, and Xin-Gao Gong, Thermal conductivity of graphene nanoribbons, Applied Physics Letters 95, 163103 (2009).

Google Scholar

[23] G. Rangrajan, Lattice vibrations(continued) Phonon thermal conductivity-worked examples, Condensed matter physics.

Google Scholar

[24] X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qin, and G. Su, Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential, Physical Review B 89, 054310(2014).

DOI: 10.1103/physrevb.89.054310

Google Scholar

[25] Wei-Rong Zhong, Mao-Ping Zhang, Bao-Quan Ai and Dong-Qin Zheng, Chirality– and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study, Applied Physics Letter 98, March 15, (2011).

DOI: 10.1063/1.3567415

Google Scholar

[26] J. Hu, X. Ruan, Z. Jiang and Y. P. Chen, Molecular Dynamics Calculation of Thermal Conductivity of Graphene Nanoribbons, Nano Letters (2009).

Google Scholar