[1]
A. Babu, J. Kim, B. Oh, Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1, Journal of Hazardous Materials. 250– 251 (2013) 477– 483.
DOI: 10.1016/j.jhazmat.2013.02.014
Google Scholar
[2]
Y. Ma, M. Rajkumar, Y. Luo, H. Freitas, Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b, Chemosphere, Article in Press. (2013).
DOI: 10.1016/j.chemosphere.2013.06.077
Google Scholar
[3]
C.D. Jadia, M.H. Fulekar, Phytoremediation: The application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant, Environmental Engineering and Management Journal. 7(5) (2008) 547-558.
DOI: 10.30638/eemj.2008.078
Google Scholar
[4]
L. Vardanyan, K. Schmieder, H. Sayadyan, T. Heege, J. Heblinski, T. Agyemang, J. De, J. Breuer, Heavy metal accumulation by certain aquatic macrophytes from Lake Sevan (Armenia), The 12th World Lake Conference. (2008) 1028-1038.
DOI: 10.1080/03680770.2009.11902352
Google Scholar
[5]
V. Sheoran, A.S. Sheoran, P. Poonia, Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: A review, Environmental Science and Technology. 41 (2011) 168-214.
DOI: 10.1080/10643380902718418
Google Scholar
[6]
J. Gu, Z.L. Huang, H.P. Fan, Z.G. Jin, Z.F. Yan, J.W. Zhang, Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan–Zheng'an–Daozhen area, Northern Guizhou Province, China, Journal of Geochemical Exploration. 130 (2013).
DOI: 10.1016/j.gexplo.2013.03.003
Google Scholar
[7]
W.C. Liu, J.K. Yang, B. Xiao, Review on treatment and utilization of bauxite residues in China, International Journal of Mineral Processing. 93 (2009) 220–231.
DOI: 10.1016/j.minpro.2009.08.005
Google Scholar
[8]
S. Bordoloi, S.K. Nath, R.K. Dutta, Iron ion removal from groundwater using banana ash, carbonates and bicarbonates of Na and K, and their mixtures, Desalination. 281 (2011) 190-198.
DOI: 10.1016/j.desal.2011.07.057
Google Scholar
[9]
M.A. Dzulfakar, M.S. Shaharuddin, A.A. Muhaimi, A.I. Syazwan, Risk Assessment of aluminum in drinking water between two residential areas, Water. 3 (2011) 882-893.
DOI: 10.3390/w3030882
Google Scholar
[10]
A.P.G.C. Marques, A.O.S.S. Rangel, P.M.L. Castro, Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology, Critical Reviews in Environmental Science and Technology. 39 (2009) 622-654.
DOI: 10.1080/10643380701798272
Google Scholar
[11]
H. Mokhtar, N. Morad, F.F.A. Fizri, Hyperaccumulation of copper by two species of aquatic plants, 2011 International Conference on Environmental Science and Engineering. IPCBEE vol. 8 (2011) 115-118.
Google Scholar
[12]
S.K. Prajapati, N. Meravi, S. Singh, Phytoremediation of chromium and cobalt using Pistia stratiotes: A sustainable approach, International Academy of Ecology and Environmental Sciences. 2(2) (2012) 136-138.
Google Scholar
[13]
Z. Deng, R. Zhang, Y. Shi, L. Hu, H. Tan, L. Cao, Enhancement of phytoremediation of Cd- and Pb-contaminated soils by self-fusion of protoplasts from endophytic fungus Mucor sp. CBRF59, Chemosphere. 91 (2013) 41–47.
DOI: 10.1016/j.chemosphere.2012.11.065
Google Scholar
[14]
R. Yang, C. Luo, Y. Chen, G. Wang, Y. Xu, Z. Shen, Copper-resistant bacteria enhance plant growth and copper phytoextraction, International Journal of Phytoremediation. 15 (2013) 573–584.
DOI: 10.1080/15226514.2012.723060
Google Scholar
[15]
Environmental Protection Agency. 2010. Phytotechnologies for Site Cleanup. EPA 542-F-10-009. October 2013. Information on http: /www. cluin. org/download/remed/phytotrchnologies-factsheet. pdf.
Google Scholar
[16]
N.I. Ismail, S.R.S. Abdullah, M. Idris, Assessment of heavy metals in water, sediment and plants in Tasik Chini, 2nd International Conference of Chemical Engineering and Industrial Biotechnology 2013 (ICCEIB 2013). 28 - 29 August 2013, Pahang, Malaysia.
Google Scholar
[17]
B.V. Tangahu, S.R.S. Abdullah, H. Basri, M. Idris, N. Anuar, M. Mukhlisin, Phytotoxicity of wastewater containing lead (Pb) effects Scirpus grossus, International Journal of Phytoremediation. 15 (2013) 814-826.
DOI: 10.1080/15226514.2012.736437
Google Scholar
[18]
I.A. Albaldawi, S.R.S. Abdullah, F. Suja, N. Anuar, M. Idris, Comparative performance of free surface and sub-surface flow systems in the phytoremediation of hydrocarbons using Scirpus grossus, Journal ofEnvironmental Management. 130 (2013).
DOI: 10.1016/j.jenvman.2013.09.010
Google Scholar
[19]
W. Xing, D.H. Li, G.H. Liu, Antioxidative responses of Elodea nuttallii (Planch. ) H. St. John to short-term iron exposure, Plant Physiology and Biochemistry. 48 (2010) 873-878.
DOI: 10.1016/j.plaphy.2010.08.006
Google Scholar
[20]
J. Kovacik, B. Klejdus, J. Hedbavny, Effect of aluminium uptake on physiology, phenols and amino acids in Matricaria chamomilla plants, Journal of Hazardous Materials. 178 (2010) 949–955.
DOI: 10.1016/j.jhazmat.2010.02.029
Google Scholar
[21]
A.I. Siqueira-Silva, L.C. Silva, A.A. Azevedo, M.A. Oliva, Iron plaque formation and morphoanatomy of roots from species of restinga subjected to excess iron, Ecotoxicology and Environmental Safety. 78 (2012) 265–275.
DOI: 10.1016/j.ecoenv.2011.11.030
Google Scholar