Methods Comparison for the Synthesis of Deca-Dodecasil 3 Rhombohedral (DDR3) Zeolite Crystals

Article Preview

Abstract:

In the present work, DDR3 zeolite crystals were synthesized using two different methods. The silica sources used to synthesize DDR3 crystals were tetramethoxysilane (TMOS) and Ludox-40. The resultant samples were characterized using X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The XRD results showed that the peaks representing DDR3 structure were not obtained for the sample synthesized in 5 days at room temperature with ultrasonic pre-treatment of 3h using Ludox-40 as silica source. On the other hand, the XRD pattern obtained for the sample synthesized in 25 days at 160 o C using TMOS as a silica source were similar with the XRD peaks reported in the literature. From these results, it can be concluded that the synthesis conditions of 25 days at 160 o C using TMOS as silica source were the favorable conditions in obtaining DDR3 crystal structure.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] Report of U.S. Energy Information Administration. The International Energy Outlook; http: /www. eia. gov/forecasts/ieo/ (accessed December, 2013).

Google Scholar

[2] Scholes. C. A., Stevens. G. W., Kentish. S. E., Membrane gas separation applications in natural gas processing. Fuel 96(2012)15-28.

DOI: 10.1016/j.fuel.2011.12.074

Google Scholar

[3] Zhang, Y., Sunarso. Liu. S., and Wang. R. Current status and development of membranes for CO2/CH4 separation: A review. Int J Greenh Gas Con 12 (2013) 84-107.

DOI: 10.1016/j.ijggc.2012.10.009

Google Scholar

[4] Yeo. Z. Y., Chew. T. L, Zhu. P. W., Mohamed. A. R., Chai. S. P ., Conventional processes and membrane technology for carbon dioxide removal from natural gas- A review. J. Nat. Gas Chem. 21(2012) 282-298.

DOI: 10.1016/s1003-9953(11)60366-6

Google Scholar

[5] Pandey.P., Chauhan R.S., Membranes for gas separation. Prog. Polym. Sci. 26(2001) 853-893.

Google Scholar

[6] Yeo. Z. Y., Chew. T. L, Zhu. P. W., Mohamed. A. R., Chai. S. P ., Synthesis and performance of microporous inorganic membranes for CO2 separation-A review. " J. Porous Mater. 20(6): 1457-1475.

DOI: 10.1007/s10934-013-9732-0

Google Scholar

[7] Himeno.S., Tomita. T, Suzuki. K, Nakayama. K, Yajima. K, Yoshida. S., Synthesis and Permeation Properties of a DDR3-Type Zeolite Membrane for Separation of CO2/CH4 Gaseous Mixtures. Ind. Eng. Chem. Res 46 (2007) 6989-6997.

DOI: 10.1021/ie061682n

Google Scholar

[8] Gucuyener. C., Van dan Bergh. J., Joaristi. A. M., Magusin. P. C. M. M,. Hensen. E. J . M., Gascon. J., Kapteijn. F., Facile synthesis of the DD3R zeolite: performance in the adsorptive separation of buta-, 3-diene and but-2-ene isomers. J. Mater. Chem., 21(2011).

DOI: 10.1039/c1jm13671b

Google Scholar

[9] Alves, M., A study of DDR3-type zeolite crystals and membranes (2007).

Google Scholar

[10] Gies. H., Studies on clathrasils. 9. crystal-structure of deca-dodecasil 3R, the missing link between zeolites and clathrasils, Z. Kristallogr. Zeitschrift fur Kristallographie, 175(1986) 93-104.

DOI: 10.1524/zkri.1986.175.1-2.93

Google Scholar

[11] den Exter.M. J., Jansen. J. C., van Bekkum.H., Separation of Permanent Gases on the All-Silica 8-Ring Clathrasil DD3R, in: J. Weitkamp., H.G. Karge, W. Holderich., Studies in Surface Science and Catalysis. Elsevier Science. 1994, 84: p.1159.

DOI: 10.1016/s0167-2991(08)63653-8

Google Scholar

[12] Tomita. T., Nakayama. K., Sakai.H., Gas separation characteristics of DDR3 type zeolite membrane. Microporous Mesoporous Mater 68(2004)71-75.

DOI: 10.1016/j.micromeso.2003.11.016

Google Scholar

[13] Qi-Liang. Y., Sheng-Lai. Z., Xiao. L. Synthesis of DDR3-Type zeolite in fluoride medium. Chin. J. Inorg. Chem., 2(2009) 002.

Google Scholar

[14] Sen. M., Bose. A., Pal. P., Das. J. K., Das. N. Rapid synthesis of DDR3 zeolite at room temperature. J. Am. Ceram. Soc., 97(2013) 52-55.

DOI: 10.1111/jace.12687

Google Scholar