Mn(II) Ions Biosorption from Aqueous Solution Using Pleurotus Spent Mushroom Compost under Batch Experiment

Article Preview

Abstract:

The Pleurotus spent mushroom compost was selected as biosorbent to sorption Mn(II) ions. The Mn(II) ions biosorption was investigated under batch experiments. The influences of pH, contact time and initial Mn(II) concentration were also investigated. The optimum Mn(II) ions biosorption was achieved at pH 6, 20 minutes of contact time and 10 mg/L of initial Mn(II) concentration using 1.0 g biosorbent dosage. The Mn(II) ions biosorption experimental data were best described by the Langmuir isotherm model and pseudo-second order kinetic model. As conclusion, the Pleurotus spent mushroom compost can be used to sorption the Mn(II) ions from the aqueous solution.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] Fu, F. &Wang, Q (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92: 407-418.

DOI: 10.1016/j.jenvman.2010.11.011

Google Scholar

[2] Vijayaraghavan, K., & Yun, Y. -S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266–91.

DOI: 10.1016/j.biotechadv.2008.02.002

Google Scholar

[3] Park, D., Yun, Y.S., and Park, J. M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15(1), 86–102.

DOI: 10.1007/s12257-009-0199-4

Google Scholar

[4] Gadd, G. M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84(1), 13–28.

DOI: 10.1002/jctb.1999

Google Scholar

[5] Han, R., Zhang, J., Zou, W., Xiao, H., Shi, J., & Liu, H. (2006). Biosorption of copper ( II ) and lead ( II ) from aqueous solution by chaff in a fixed-bed column. Journal of Hazardous Materials, 133, 262–268.

DOI: 10.1016/j.jhazmat.2005.10.019

Google Scholar

[6] Amarasinghe, B. M. W. P. K., & Williams, R. A. (2007). Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chemical Engineering Journal, 132, 299–309.

DOI: 10.1016/j.cej.2007.01.016

Google Scholar

[7] Krishnani, K. K., Meng, X., Christodoulatos, C., & Boddu, V. M. (2008). Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Journal of Hazardous Materials, 153, 1222–1234.

DOI: 10.1016/j.jhazmat.2007.09.113

Google Scholar

[8] Witek-krowiak, A., Szafran, R. G., & Modelski, S. (2011). Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. DES, 265(1-3), 126–134. doi: 10. 1016/j. desal. 2010. 07. 042.

DOI: 10.1016/j.desal.2010.07.042

Google Scholar

[9] Lugo-lugo, V., Barrera-díaz, C., Ureña-núñez, F., Bilyeu, B., & Linares-hernández, I. (2012). Biosorption of Cr ( III ) and Fe ( III ) in single and binary systems onto pretreated orange peel. Journal of Environmental Management, 112, 120–127.

DOI: 10.1016/j.jenvman.2012.07.009

Google Scholar

[10] García-mendieta, A., Olguín, M. T., & Solache-ríos, M. (2012). Biosorption properties of green tomato husk ( Physalis philadelphica Lam ) for iron, manganese and iron – manganese from aqueous systems. Desalination, 284, 167–174.

DOI: 10.1016/j.desal.2011.08.052

Google Scholar

[11] Zakaria, Z. A., Suratman, M., Mohammed, N., & Ahmad, W. A. (2009). Chromium (VI) removal from aqueous solution by untreated rubber wood sawdust. DES, 244(1-3), 109–121.

DOI: 10.1016/j.desal.2008.05.018

Google Scholar

[12] Vinodhini, V., & Das, N. (2010). Packed bed column studies on Cr (VI) removal from tannery wastewater by neem sawdust. Desalination, 264(1-2), 9–14.

DOI: 10.1016/j.desal.2010.06.073

Google Scholar

[13] Volesky, B. (2007). Biosorption and me. Water Research, 41(18), 4017–29.

Google Scholar

[14] Singh, A. D., Noorlidah, A. and Vikineswary, S. (2003). Optimization of extraction of bulk enzymes from spent mushroom compost. Journal of Chemical Technology and Biotechnology, 78: 743–752.

DOI: 10.1002/jctb.852

Google Scholar

[15] Khosravihaftkhany, S., Morad, N., Teng, T. T., Abdullah, A. Z., & Norli, I. (2013). Biosorption of Pb(II) and Fe(III) from Aqueous Solutions Using Oil Palm Biomasses as Adsorbents. Water, Air, & Soil Pollution, 224(3), 1455.

DOI: 10.1007/s11270-013-1455-y

Google Scholar

[16] Tay, C. -C., Liew, H. -H., Redzwan, G., Yong, S. -K., Surif, S., & Abdul-Talib, S. (2011). Pleurotus ostreatus spent mushroom compost as green biosorbent for nickel (II) biosorption. Water Science & Technology, 64(12), 2425–2432.

DOI: 10.2166/wst.2011.805

Google Scholar

[17] Ma, L., Peng, Y., Wu, B., Lei, D., & Xu, H. (2013). Pleurotus ostreatus nanoparticles as a new nano-biosorbent for removal of Mn(II) from aqueous solution. Chemical Engineering Journal, 225, 59–67.

DOI: 10.1016/j.cej.2013.03.044

Google Scholar

[18] Webi, T.W. & Chakravort, R.K. (1974). Pore and solid diffusion models for fixed-bed adsorbers, AIChE J. 20 228–238.

DOI: 10.1002/aic.690200204

Google Scholar