Membranes for Gas Separation Current Development and Challenges

Article Preview

Abstract:

—A new bang of natural gas demand has opened up the opportunities towards the utilization of membrane technology for the purification process.The advantages in terms of smaller footprint, lower weight, minimum utility requirement and low labor intensity make them appropriate for wide scale applications. Polymeric membrane is one of the greatest emerging fields in membrane material development. Nevertheless, the separation performance of the existing polymeric materials were reached a limit in the trade-off between permeability and selectivity. The development of inorganic material gives a significance improvement in membrane performance but it outrageously expensive for many applications and having complicated procedure during fabrication process have limit the application of inorganic membrane in gas separation. Thus, a rapid demand in membrane technology for gas separation and the effort toward seeking the membranes with higher permeability and selectivity has motivated the development of mixed matrix membrane. Mixed matrix membrane (MMM) which incorporating inorganic fillers in a polymer matrix is expected to overcome the limitations of the polymeric and inorganic membranes. Apart from an overview of the different membrane materials for gas separation, this paper also highlights the development of mixed matrix membrane and challenges in fabrication of mixed matrix membranes.

You have full access to the following eBook
You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] N. Jusoh, K.K. Lau, A.M. Shariff, Y.F. Yeong, Capture of bulk CO2 from methane with the presence of heavy hydrocarbon using membrane process, Int J Greenh Gas Con, 22 (2014) 213-222.

DOI: 10.1016/j.ijggc.2014.01.001

Google Scholar

[2] A.M. Hamid, Parametric analysis of CO2 separation from natural gas by adsorption process, in: Dept. Chem. Eng., Univ. Technology PETRONAS Perak, Malaysia, (2006).

Google Scholar

[3] A. Demirbas, Methane Gas Hydrate, 22 ed., Springer, London, (2010).

Google Scholar

[4] B.D. Bhide, A.V. and, S.A. Stern, Hybrid processes for the removal of acid gases from natural gas, J Membrane Sci, 140 (1998) 27-49.

DOI: 10.1016/s0376-7388(97)00257-3

Google Scholar

[5] C.I.F. Ferreira, CO2/CH4 Separation with ionic liquids, in: Dept. Chem., Univ Aveiro, Aveiro, Portugal, (2010).

Google Scholar

[6] W.J. Schell, C.D. Houston, Membrane Gas Separations for Chemical Processes and Energy Applications, in: A.S. Series (Ed. ) Industrial Gas Separations, American Chemical Society, June 16, 1983, pp.125-143.

DOI: 10.1021/bk-1983-0223.ch007

Google Scholar

[7] A. Mustafa, M. Aziz, A.F. Ismail, H. Hasbullah, S. Sanip, N.B. Cheer, A.R. Hassan, Development of asymmetric carbon hollow fibre membrane for gas separation, Universiti Teknologi Malaysia, Johor, Malaysia, (2006).

Google Scholar

[8] A.F. Ismail, L.I.B. David, A review on the latest development of carbon membranes for gas separation, J Membrane Sci, 193 (2001) 1-18.

Google Scholar

[9] D.F. Mohshim, H. b. Mukhtar, Z. Man, R. Nasir, Latest Development on Membrane Fabrication for Natural Gas Purification: A Review, J Eng, 2013 (2013) 7.

DOI: 10.1155/2013/101746

Google Scholar

[10] S. Husain, Formation Mixed matrix dual layer hollow fiber membranes for natural gas separation, in: School of Chem & Biomolecular Eng, Georgia Institute of Technology, Atlanta, Georgia, (2006).

Google Scholar

[11] E. Drioli, G. Barbieri, L. Peter, P. Pullumbi, Membrane Engineering for the Treatment of Gases: Gas-Separation Problems with Membranes, Royal Society of Chemistry, (2011).

DOI: 10.1039/9781849733472-fp009

Google Scholar

[12] J.D. Perry, Formation and Characterization of Hybrid Membranes Utilizing High Performance Polyimides and Carbon Molecular Sieves, Dept. Chem & Biomolecular Eng, Georgia Institute of Technology, Atlanta, Georgia, (2007).

Google Scholar

[13] G.C. Kapantaidakis, S.P. Kaldis, G.P. Sakellaropoulos, E. Chira, B. Loppinet, G. Floudas, Interrelation between phase state and gas permeation in polysulfone/polyimide blend membranes, J Polym Sci Pol Phys, 37(1999) 2788-2798.

DOI: 10.1002/(sici)1099-0488(19991001)37:<2788::aid-polb8>3.0.co;2-l

Google Scholar

[14] R. W Baker, K. Lokhandwala, Natural Gas Processing with Membrane: Overview, Ind Eng Chem Res, 4(2008) 2109-(2021).

Google Scholar

[15] W.J. Koros, D.R. Paul, Observations concerning the temperature dependence of the langmuir sorption capacity of glassy polymers, J Polym Sci Pol Phys 19 (1981) 1655-1656.

DOI: 10.1002/pol.1981.180191014

Google Scholar

[16] M. Al-Juaied, W.J. Koros, Performance of natural gas membranes in the presence of heavy hydrocarbons, J Membrane Sci, 274 (2006) 227-243.

DOI: 10.1016/j.memsci.2005.08.013

Google Scholar

[17] I. Ahmed, Z.A.M. Yusof, M.D.H. Beg, Fabrication of Polymer based mix matrix membrane -a short review, Int J Basic Appl Sci, 10 (2010) 14-19.

Google Scholar

[18] K. Khulbe, C. Feng, M. T, Membrane Characterization, H.T. Editors (Ed. ) Water and wastewater treatment technologies, Eolss Publishers, Oxford, UK.

Google Scholar

[19] L. Liu, Gas Separation by Poly(ether Block Amide) Membranes, Dept. Chem Eng, University of Waterloo Ontario, Canada, (2008).

Google Scholar

[20] A.F. Ismail, D. Rana, T. Matsuura, H.C. Foley, Carbon-based Membranes for Separation Processes, Springer, (2011).

Google Scholar

[21] D.R. Paul, D.R. Kemp, The diffusion time lag in polymer membranes containing adsorptive fillers, J Polym Sci Polym Sym, 41 (1973) 79-93.

DOI: 10.1002/polc.5070410109

Google Scholar

[22] M. -D. Jia, K. -V. Pleinemann, R. -D. Behling, Preparation and characterization of thin-film zeolite–PDMS composite membranes, J Membrane Sci, 73 (1992) 119-128.

DOI: 10.1016/0376-7388(92)80122-z

Google Scholar

[23] J.M. Duval, B. Folkers, M.H.V. Mulder, G. Desgrandchamps, C.A. Smolders, Adsorbent filled membranes for gas separation. Part 1: Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents, J Membrane Sci, 80 (1993).

DOI: 10.1016/0376-7388(93)85143-k

Google Scholar

[24] S. Kulprathipanja, Mixed Matrix Membrane Development, Annals of the New York Academy of Sciences, 984 (2003) 361-369.

DOI: 10.1111/j.1749-6632.2003.tb06012.x

Google Scholar

[25] M.G. Süer, N. Baç, L. Yilmaz, Gas permeation characteristics of polymer-zeolite mixed matrix membranes, J Membrane Sci, 91 (1994) 77-86.

DOI: 10.1016/0376-7388(94)00018-2

Google Scholar

[26] R. Mahajan, W.J. Koros, Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials, Ind Eng Chem Res, 39 (2000) 2692-2696.

DOI: 10.1021/ie990799r

Google Scholar

[27] T.M. Gür, Permselectivity of zeolite filled polysulfone gas separation membranes, J Membrane Sci, 9 (1994)283-289.

DOI: 10.1016/0376-7388(94)00102-2

Google Scholar

[28] I.F.J. Vankelecom, E. Merckx, M. Luts, J.B. Uytterhoeven, Incorporation of Zeolites in Polyimide Membranes, J Phys Chem-US, 99 (1995) 13187-13192.

DOI: 10.1021/j100035a023

Google Scholar

[29] Y. Zhang, J. Sunarso, S. Liu, R. Wang, Current status and development of membranes for CO2/CH4 separation: A review, Int J Greenh Gas Con, 12 (2013) 84-107.

DOI: 10.1016/j.ijggc.2012.10.009

Google Scholar

[30] T. -S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog Polym Sci, 32 (2007) 483-507.

DOI: 10.1016/j.progpolymsci.2007.01.008

Google Scholar

[31] Ş.B. Tantekin-Ersolmaz, Ç. Atalay-Oral, M. Tatlıer, A. Erdem-Şenatalar, B. Schoeman, J. Sterte, Effect of zeolite particle size on the performance of polymer–zeolite mixed matrix membranes, J Membrane Sci, 175 (2000) 285-288.

DOI: 10.1016/s0376-7388(00)00423-3

Google Scholar

[32] A.S. Wiryoatmojo, Development of mixed membranes for separation of CO2 from CH4, in: Dept. Chem Eng, Universiti Teknologi Petronas, Perak, Malaysia, (2010).

Google Scholar

[33] J. -M. Duval, Adsorbent filled polymeric membranes - Application to Pevaporation and Gas Separation, Faculty of Engineering Technology, University Twente, Enschede, Netherlands, (1993).

Google Scholar

[34] Y. Li, T. -S. Chung, C. Cao, S. Kulprathipanja, The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes, J Membrane Sci, 260 (2005) 45-55.

DOI: 10.1016/j.memsci.2005.03.019

Google Scholar