Synthesis and Characterizations of SiO2-Ag Core-Shell Nanostructure Using Fatty Alcohols as Surface Modifiers

Article Preview

Abstract:

SiO2-Ag core-shell nanostructure with silica core (SiO2) and silver shell (Ag) nanoparticles with spherical morphology were successfully synthesized using a modified self-assembly sol-gel method. Ag nanoparticles at ca.10-50 nm were successfully attached on monodispersed silica spheres (SiO2) with diameter of ca. 450 nm. Renewable resources of palm oil, derived fatty alcohols (octyl-alcohol (C8), decyl-alcohol (C10) and dodecyl-alcohol (C12)) were employed as nonsurfactant surface modifiers prior to coating with Ag nanoparticles. X-ray diffraction (XRD) patterns of calcined SiO2-Ag core-shell nanostructure prepared with surface modifiers exhibited amorphous structure of SiO2 (core) and face-centered cubic (FCC) structure of metallic Ag nanoparticles (shell). The results obtained in the present work demonstrated the feasibility of employing fatty alcohols as potential nonsurfactant surface modifiers in synthesizing SiO2-Ag core-shell.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] P.N.R. Kishorer and P. Jeevanandam, J. Alloy and Compd. 522 (2012) 51-62.

Google Scholar

[2] S. Kalele, R. Dey, N. Hebalkar, J. Urban, S.W. Gosavi and S.K. Kulkarni, Indian Ecademy of Science 65 (2005) 787-791.

DOI: 10.1007/bf02704076

Google Scholar

[3] H.L. Xia and F.Q. Tang, J. Phys. Chem. B 107 (2003) 9175-9178.

Google Scholar

[4] S. Son, S.H. Hwang, C. Kim, J.Y. Yun and J. Jang, ACS Appl. Mater. Interfaces 5 (2013) 4815-4820.

Google Scholar

[5] K. Nischala, T.N. Rao, N. Hebalkar, Colloids Surf., B: Biointerfaces 82 (2011) 203-208.

DOI: 10.1016/j.colsurfb.2010.08.039

Google Scholar

[6] S. Tang, Y. Tang, S. Zhu, H. Lu, X. Meng, J. Solid State Chem. 180 (2007) 2871–2876.

Google Scholar

[7] Z. Nan, N. Liu, C. Wei, Mater. Sci. Eng. C 29 (2009) 1124–1127.

Google Scholar

[8] F. Caruso, Adv. Mater. 13 (2001) 11-22.

Google Scholar

[9] Z.J. Jiang and C.Y. Liu, J. Phys. Chem. B 107 (2003) 12411-12415.

Google Scholar

[10] R.A. Caruso and M. Antonietti, Chem. Mater. 13 (2001) 3272-3282.

Google Scholar

[11] K. Han, Z. Zhao, Z. Xiang, C. Wang, J. Zhang and B. Yang, Mater. Lett. 61 (2007) 363-368.

Google Scholar

[12] M.A. Lewis, Wat. Res. 25 (1991) 101-113.

Google Scholar

[13] H. Misran, R. Singh and M.A. Yarmo, Micropor. & Mesopor. Mater. 112 (2008) 243-253.

Google Scholar

[14] H. Misran, M. A. Yarmo and S. Ramesh, Ceram. Inter. 39 (2013) 931-940.

Google Scholar

[15] M.A. Salim, H. Misran, S.Z. Othman, N.N.H. Shah, N.A.A. Razak and A. Manap, Appl. Mech. Mater. 465-466 (2014) 813-818.

Google Scholar

[16] M.A. Salim, H. Misran, S.Z. Othman, N.N.H. Shah, N.A.A. Razak and A. Manap, IOP Conf. Sciences: Earth and Environmental Science 16 (2013) 012054.

DOI: 10.1088/1755-1315/16/1/012054

Google Scholar