[1]
S. Choi, J. Shin, & G. Kim, The Electrochemical and Thermodynamic Characterization of PrBaCo2 − x FexO5 + δ ( x = 0, 0. 5, 1) Infiltrated into Yttria-Stabilized Zirconia Scaffold as Cathodes for Solid Oxide Fuel Cells, J. Power Sources. 201 (2012).
DOI: 10.1016/j.jpowsour.2011.09.096
Google Scholar
[2]
S. Huang, G. Zhou, & Y. Xie, Electrochemical Performances of Ag–(Bi2O3)0. 75(Y2O3)0. 25 Composite Cathodes, J. Alloys and Compd. 464 (2008) 322–326.
DOI: 10.1016/j.jallcom.2007.09.111
Google Scholar
[3]
J. Raharjo, Performa Elektrokimia Komposit Katoda Berbasis La0, 6Sr0, 4Co0, 2Fe0, 8O3-δ Untuk Solid Oxide Fuel Cell Bersuhu Rendah, Indonesian J. Mater. Sci. 13 (2012) 198–203.
Google Scholar
[4]
Park, K., Yu, S., Bae, J., Kim, H., & Ko, Y. Fast Performance Degradation of SOFC caused by Cathode Delamination in Long-Term Testing, Int. J. Hydrogen Energy. 35 (2010) 8670–8677.
DOI: 10.1016/j.ijhydene.2010.05.005
Google Scholar
[5]
Tietz, F., Mai, A., & Stöver, D. From Powder Properties to Fuel Cell Performance – A Holistic Approach for SOFC Cathode Development, Solid State Ionics. 179 (2008) 1509–1515.
DOI: 10.1016/j.ssi.2007.11.037
Google Scholar
[6]
Rahman, H. A., Muchtar, A., Muhamad, N., & Abdullah, HStructure and Thermal Properties of La0. 6Sr0. 4Co0. 2Fe0. 8O3−δ–SDC Carbonate Composite Cathodes for Intermediate-to Low-Temperature Solid Oxide Fuel Cells, Ceram. Int. 38 (2012) 1571–1576.
DOI: 10.1016/j.ceramint.2011.09.043
Google Scholar
[7]
Xu, Q., Huang, D., Zhang, F., Chen, W., Chen, M., & Liu, H. Structure, Electrical Conducting and Thermal Expansion Properties of La0. 6Sr0. 4Co0. 2Fe0. 8O3−δ–Ce0. 8Sm0. 2O2−δ Composite Cathodes, J. Alloys and Compd. 454 (2008) 460–465.
DOI: 10.1016/j.jallcom.2006.12.132
Google Scholar
[8]
T. Suzuki, Y. Takajashi, K. Hamamoto, T, Yamaguchi, Y. Fujishiro, Low Temperature Processed Composite Cathodes for Solid-oxide fuel Cells, Int. J. Hydrogen Energy. 36 (2011) 10998–11003.
DOI: 10.1016/j.ijhydene.2011.05.155
Google Scholar
[9]
Z. Wang, L. Xin, X. Zhao, Y. Qiu, Z. Zhang, O. A. Baturina & W. Li, Carbon supported Ag Nanoparticles with Different Particle Size as Cathode Catalysts for Anion Exchange Membrane Direct Glycerol Fuel Cells, Renewable Energy. 62 (2014) 556–562.
DOI: 10.1016/j.renene.2013.08.005
Google Scholar
[10]
L. Zhang, L. Li, F. Zhao, F. Chen, C. Xia, Sm0. 2Ce0. 8O1. 9/Y0. 25Bi0. 75O1. 5 Bilayered Electrolytes for Low-Temperature SOFCs with Ag-Y0. 25Bi0. 75O1. 5 Composite Cathodes, Solid State Ionics. 192 (2011) 557-560.
DOI: 10.1016/j.ssi.2010.06.015
Google Scholar
[11]
Da Conceição, L., Silva, A. M., Ribeiro, N. F. P., & Souza, M. M. V. M. Combustion Synthesis of La0. 7Sr0. 3Co0. 5Fe0. 5O3 (LSCF) Porous Materials for Application as Cathode in IT-SOFC, Mater. Res. Bulletin. 46 (2011) 308–314.
DOI: 10.1016/j.materresbull.2010.10.009
Google Scholar
[12]
R. Su, Z. Lü, S.P. Jiang, Y. Shen, W. Su, & K. Chen, Ag Decorated (Ba, Sr)(Co, Fe)O3 Cathodes for Solid Oxide Fuel Cells Prepared by Electroless Silver Deposition, Int. J. Hydrogen Energy. 38 (2013) 2413–2420.
DOI: 10.1016/j.ijhydene.2012.11.126
Google Scholar