Application of Schlieren Optical Visualization System in External Combustion and Internal Combustion Engine: A Review

Article Preview

Abstract:

Schlieren optical visualization technique system is the unique technique due to the ability in producing a neutral image easily-interpretable image of refractive-index-gradient areas. The Schlieren system provides a method for viewing the flow through the transparent media and the most using this technique is to photograph the flow. This paper presents the review of the application of the Schlieren optical visualization system external and internal combustion engine in order to observe the fuel-air mixing and flame development during the burning process. The basic technique of Schlieren system, especially for Z-type and two mirror Schlieren system provide a powerful and clearly image to visualize the changes of the density in a transparent medium. This method can capture spray evaporation, spray interference and mixture formation clearly with real images. Analysis of optical image visualization observations reveals that the mixture formation of fuel and air exhibits the influence of the ignition and flame development. Thus, the observation of systematic control of the creation of a mixture of experimental apparatus allows us to achieve significant progress in the combustion process and will present the information to understanding the basic terms of reduced fuel consumption and exhaust emissions.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] G. S. Settles, Schlieren and Shadowgraph Techniques. 2001, p.376.

Google Scholar

[2] H. Richard and M. Raffel, Principle and applications of the background oriented schlieren (BOS) method, Meas. Sci. Technol., vol. 12, no. 9, p.1576–1585, Sep. (2001).

DOI: 10.1088/0957-0233/12/9/325

Google Scholar

[3] A. Mazumdar, Principles and Techniques of Schlieren Imaging Systems, (2013).

Google Scholar

[4] C. Arcoumanis, D. R. Hull, and J. H. Whitelaw, An Approach to Charge Stratification in Lean-Burn, Spark- Ignition Engines, Oct. (1994).

DOI: 10.4271/941878

Google Scholar

[5] C. Arcoumanis and C. -S. Bae, Visualization of Flow/Flame Interaction in a Constant-Volume Combustion Chamber, Mar. (1993).

DOI: 10.4271/930868

Google Scholar

[6] J. Song and M. Sunwoo, Analysis of flame kernel development with Schlieren and laser deflection in a constant volume combustion chamber, Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 216, no. 7, p.581–590, Jan. (2002).

DOI: 10.1243/095440702760178604

Google Scholar

[7] J. Song and M. Sunwoo, A Modeling and Experimental Study of Initial Flame Kernel Development and Propagation in SI Engines, Mar. (2000).

DOI: 10.4271/2000-01-0960

Google Scholar

[8] J. Galle, C. Van De Maele, S. Defruyt, S. Verhelst, and R. Verschaeren, Evaluation of Some Important Boundary Conditions for Spray Measurements in a Constant Volume Combustion Chamber, Apr. (2013).

DOI: 10.4271/2013-01-1610

Google Scholar

[9] Amir Khalid and Bukhari Manshoor, Analysis of Mixture formation and Flame Development of Diesel Combustion using a Rapid Compression Machine and Optical Visualization Technique, Applied Mechanics and Materials Vols. 315(2013).

DOI: 10.4028/www.scientific.net/amm.315.293

Google Scholar

[10] Amir Khalid, Norazwan Azman, Hanis Zakaria, B. Manshoor, Izzuddin Zaman, Azwan Sapit, Mutalib Leman, Effects of storage duration on biodiesel properties derived from waste cooking oil, Applied Mechanics and Materials, Volume 554, 2014, Pages 494-499, DOI: 10. 4028/www. scientific. net/AMM. 554. 494.

DOI: 10.4028/www.scientific.net/amm.554.494

Google Scholar

[11] M. S. Mansour, A. M. Elbaz, and M. F. Zayed, Flame Kernel Generation and Propagation in Turbulent Partially Premixed Hydrocarbon Jet, Combust. Sci. Technol., vol. 186, no. 4–5, p.698–711, Apr. (2014).

DOI: 10.1080/00102202.2014.883850

Google Scholar

[12] K. LEE, C. LEE, and H. JEOUNG, A Study on the Effect of Stratified Mixture Formation on Combustion Characteristics in a Constant Volume Combustion Chamber, JSME Int. J. Ser. B, vol. 48, no. 2, p.265–272, Nov. (2005).

DOI: 10.1299/jsmeb.48.265

Google Scholar

[13] J. Kim and R. W. Anderson, Spark Anemometry of Bulk Gas Velocity at the Plug Gap of a Firing Engine, Oct. (1995).

DOI: 10.4271/952459

Google Scholar

[14] A. A. Abdel-Rehim, Impact of spark plug number of ground electrodes on engine stability, Ain Shams Eng. J., vol. 4, no. 2, p.307–316, Jun. (2013).

DOI: 10.1016/j.asej.2012.09.006

Google Scholar

[15] J. Zhou, K. Nishida, T. Yoshizaki, and H. Hiroyasu, Flame Propagation Characteristics in a Heterogeneous Concentration Distribution of a Fuel-Air Mixture, Oct. (1998).

DOI: 10.4271/982563

Google Scholar

[16] O. Yaşar, A new ignition model for spark-ignited engine simulations, Parallel Comput., vol. 27, no. 1–2, p.179–200, Jan. (2001).

DOI: 10.1016/s0167-8191(00)00094-6

Google Scholar

[17] R. Herweg and R. R. Maly, A Fundamental Model for Flame Kernel Formation in S. I. Engines, Oct. (1992).

Google Scholar

[18] B. Ihracska, D. Wen, S. Imran, D. R. Emberson, L. M. Ruiz, R. J. Crookes, and T. Korakianitis, Assessment of elliptic flame front propagation characteristics of hydrogen in an optically accessible spark ignition engine, Int. J. Hydrogen Energy, vol. 38, no. 35, p.15452–15468, Nov. (2013).

DOI: 10.1016/j.ijhydene.2013.08.113

Google Scholar

[19] Amir Khalid and Bukhari Manshoor, Effect of High Swirl Velocity on Mixture Formation and Combustion Process of Diesel Spray, Applied Mechanics and Materials Vols. 229-231 (2012), Trans Tech Publications, Switzerland, pp.695-699.

DOI: 10.4028/www.scientific.net/amm.229-231.695

Google Scholar

[20] D. L. Lord, R. W. Anderson, D. D. Brehob, and Y. Kim, The Effects of Charge Motion on Early Flame Kernel Development, Mar. (1993).

DOI: 10.4271/930463

Google Scholar

[21] T. Mantel, Three Dimensional Study of Flame Kernel Formation Around a Spark Plug, Feb. (1992).

DOI: 10.4271/920587

Google Scholar

[22] C. Pera, S. Chevillard, and J. Reveillon, Effects of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines, Combust. Flame, vol. 160, no. 6, p.1020–1032, Jun. (2013).

DOI: 10.1016/j.combustflame.2013.01.009

Google Scholar

[23] K. Park, The flame behaviour of liquefied petroleum gas spray impinging on a flat plate in a constant volume combustion chamber, Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 219, no. 5, p.655–663, Jan. (2005).

DOI: 10.1243/095440705x11031

Google Scholar

[24] S. H. R. Müller, B. Böhm, M. Gleißner, S. Arndt, and A. Dreizler, Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF, Appl. Phys. B, vol. 100, no. 3, p.447–452, Jul. (2010).

DOI: 10.1007/s00340-010-4134-3

Google Scholar

[25] D. K. Srivastava, K. Dharamshi, and A. K. Agarwal, Flame kernel characterization of laser ignition of natural gas–air mixture in a constant volume combustion chamber, Opt. Lasers Eng., vol. 49, no. 9–10, p.1201–1209, Sep. (2011).

DOI: 10.1016/j.optlaseng.2011.04.015

Google Scholar

[26] T. Tahtouh, F. Halter, C. MounaÏm-Rousselle, and E. Samson, Experimental Investigation of the Initial Stages of Flame Propagation in a Spark-Ignition Engine: Effects of Fuel, Hydrogen Addition and Nitrogen Dilution, May (2010).

DOI: 10.4271/2010-01-1451

Google Scholar

[27] P. G. Aleiferis, Y. Hardalupas, A. M. K. P. Taylor, K. Ishii, and Y. Urata, Cyclic variations of fuel-droplet distribution during the early intake stroke of a lean-burn stratified-charge spark-ignition engine, Exp. Fluids, vol. 39, no. 5, p.789–798, Oct. (2005).

DOI: 10.1007/s00348-005-0001-0

Google Scholar

[28] Amir Khalid, N. Tamaldin, M. Jaat, M. F. M. Ali, B. Manshoor, Izzuddin Zaman, Impacts of biodiesel storage duration on fuel properties and emissions, Procedia Engineering, volume 68, 2013, Pages 225 – 230, Elsevier, 2013, DOI: 10. 1016/j. proeng. 2013. 12. 172.

DOI: 10.1016/j.proeng.2013.12.172

Google Scholar

[29] D. Eichenberger, Effect of unsteady stretch on spark-ignited flame kernel survival, Combust. Flame, vol. 118, no. 3, p.469–478, Aug. (1999).

DOI: 10.1016/s0010-2180(98)00169-2

Google Scholar

[30] K. E. Far, F. Parsinejad, M. Gautreau, and H. Metghalchi, The Effect of Spark Electrode Geometry on Flame Kernel of Premixed Methane-Air Mixtures, in Volume 3: Combustion Science and Engineering, 2008, p.395–401.

DOI: 10.1115/imece2008-66708

Google Scholar