Failure Surface Variation Obtained with the Truss-Like Discrete Element Method

Article Preview

Abstract:

This paper presents the study of failure surface obtained in the truss-like Discrete Element Method (DEM). The element constitutive law considers the fracture energy of the material and its spatial variation is used to take into account the heterogeneity of the simulated materials. It is studied the influence of spatial distribution of fracture energy and the spatial lattice perturbation on the DEM failure surface. A DEM failure criterion is compared with concrete and rock failure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

225-232

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Krajcinovic, Damage Mechanics, Elsevier, Amsterdam, (1996).

Google Scholar

[2] J.D. Riera, Local Effects In Impact Problems In Concrete Structures. In: proceedings, Conf. on Structural Analysis and Design of Nuclear Power Plants. Porto Alegre, Rs, Brasil. pp.0-0, (1984).

Google Scholar

[3] A. Hillerborg, A Model for Fracture Analysis. Cod LUTVDG/TV BM-3005/1-8, (1978).

Google Scholar

[4] M.M. Rocha, Ruptura e Efeitos de Escala em Materiais não Homogêneos. Tese (Mestrado), CPGEC, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil, (1989).

DOI: 10.32467/issn.2175-3628v23n1a14

Google Scholar

[5] L. Maders, L.E. Kosteski, I. Iturrioz, Estudo do efeito de escala no método dos elementos discretos formado por barras. Mecánica Computacional. 31, 1857-1876, (2012).

Google Scholar

[6] L.L. Mills, R.M. Zimmerman, Compressive strength of plain concrete under multiaxial loading conditions. ACI Journal, Proceeding 67, October. 802–807, (1970).

DOI: 10.14359/7310

Google Scholar

[7] H.B. Kupfer, K.H. Gerstle, Behavior of concrete under biaxial stress, Journal of the Eng. Mech. Div. ASCE. Vol. 99, EM4 853-866, (1973).

DOI: 10.1061/jmcea3.0001789

Google Scholar

[8] L.A. Traina, S.A. Mansour, Biaxial strength and deformational behavior of plain and steel fiber concrete, ACI Material Journal, 354–362, (1991).

DOI: 10.14359/1852

Google Scholar

[9] H.S. Shang, Y.P. Song, Behavior of air-entrained concrete under the compression with constant confined stress after freeze–thaw cycles, Dalian University of Technology, China, Cement and Concrete Research, 854–860, (2007).

DOI: 10.1016/j.cemconcomp.2007.10.006

Google Scholar

[10] H.S. Shang, Y.P. Song, Triaxial compressive strength of air-entrained concrete after freeze–thaw cycles, Cold Regions Science and Technology, 33–37, (2013).

DOI: 10.1016/j.coldregions.2013.02.002

Google Scholar

[11] J. D Riera, L.F.M. Miguel, I. Iturrioz, Study of imperfections in the cubic mesh of the truss-like discrete element method, IJDM, doi: 10. 1177/1056789513513917, (2013).

DOI: 10.1111/ffe.12135

Google Scholar

[12] I. Iturrioz, J.D. Riera, L.F.F. Miguel, Introduction of imperfections in the cubic mesh of the truss-like discrete element method, FFEMS, doi: 10. 1111/ffe. 12135, (2013).

DOI: 10.1111/ffe.12135

Google Scholar