[1]
J. Lemaitre, R. Desmorat, and M. Sauzay. Anisotropic damage law of evolution. European Journal of Mechanics-A/Solids, 19(2): 187-208, (2000).
DOI: 10.1016/s0997-7538(00)00161-3
Google Scholar
[2]
L.M. Kachanov. Time of the rupture process under creep conditions. Isv. Akad. Nauk. SSR. Otd Tekh. Nauk, 8: 26-31, (1958).
Google Scholar
[3]
E.J. Barbero. Finite element analysis of composite materials. CRC press, (2007).
Google Scholar
[4]
J. Lemaitre. A Course on Damage Mechanics. Springer, Berlin, (1992).
Google Scholar
[5]
J.L. Chaboche. Damage induced anisotropy: on the difficulties associated with the active/passive unilateral condition. International Journal of Damage Mechanics, 1(2): 148-171, (1992).
DOI: 10.1177/105678959200100201
Google Scholar
[6]
J.L. Chaboche, P.M. Lesne, and J.F. Maire. Phenomenological damage mechanics of brittle materials with description of the unilateral effects. Fracture and damage in quasi-brittle structures, pages 75-84, (1994).
Google Scholar
[7]
R.K. Abu Al-Rub and G.Z. Voyiadjis. On the coupling of anisotropic damage and plasticity models for ductile materials. International Journal of Solids and Structures, 40(11): 2611-2643, (2003).
DOI: 10.1016/s0020-7683(03)00109-4
Google Scholar
[8]
S. Murakami, K. Hayakawa, and Y. Liu. Damage evolution and damage surface of elasticplastic-damage materials under multiaxial loading. International Journal of Damage Mechanics, 7(2): 103-128, (1998).
DOI: 10.1177/105678959800700202
Google Scholar
[9]
D.J. Bammann and K.N. Solanki. On kinematic, thermodynamic, and kinetic coupling of a damage theory for polycrystalline material. International Journal of Plasticity, 26(6): 775-793, (2010).
DOI: 10.1016/j.ijplas.2009.10.006
Google Scholar
[10]
M. Ekh, A. Menzel, K. Runesson, and P. Steinmann. Anisotropic damage with the mcr effect coupled to plasticity. International journal of engineering science, 41(13): 1535-1551, (2003).
DOI: 10.1016/s0020-7225(03)00032-6
Google Scholar
[11]
S. Forest. Micromorphic approach for gradient elasticity, viscoplasticity, and damage. Journal of Engineering Mechanics, 135(3): 117-131, (2009).
DOI: 10.1061/(asce)0733-9399(2009)135:3(117)
Google Scholar
[12]
O. Aslan and S. Forest. Crack growth modelling in single crystals based on higher order continua. Computational Materials Science, 45(3): 756-761, (2009).
DOI: 10.1016/j.commatsci.2008.09.016
Google Scholar
[13]
S. Wulfinghoff, E. Bayerschen, and T. Böhlke. A gradient plasticity grain boundary yield theory. International Journal of Plasticity, 51: 33-46, (2013).
DOI: 10.1016/j.ijplas.2013.07.001
Google Scholar
[14]
C. Miehe, F. Welschinger, and M. Hofacker. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering, 83(10): 1273-1311, (2010).
DOI: 10.1002/nme.2861
Google Scholar
[15]
M. Hofacker and C. Miehe. A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns. International Journal for Numerical Methods in Engineering, 93(3): 276-301, (2013).
DOI: 10.1002/nme.4387
Google Scholar
[16]
S. Reese. On the equivalence of mixed element formulations and the concept of reduced integration in large deformation problems. International Journal of Nonlinear Sciences and Numerical Simulation, 3(1): 1-34, (2002).
DOI: 10.1515/ijnsns.2002.3.1.1
Google Scholar
[17]
S. Reese. On a physically stabilized one point finite element formulation for threedimensional finite elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 194(45): 4685-4715, (2005).
DOI: 10.1016/j.cma.2004.12.012
Google Scholar
[18]
S. Wulfinghoff, S. Reese, and M. Fassin. Comparison of two time integration algorithms for an anisotropic damage model coupled to plasticity (submitted). In Proceedings of the International Conference On Damage Mechanics (ICDM2), (2015).
DOI: 10.4028/www.scientific.net/amm.784.292
Google Scholar