[1]
V.M. Kornev, Quasi-brittle fracture diagram of solids with structural hierarchy under low-cycle loading, Physical. Mesomech. 14 (2011), No. 5, 31-45 (in Russian).
Google Scholar
[2]
V.M. Kornev, Diagrams of quasi-brittle fatigue fracture (two-frequency loading), Physical. Mesomech. 15 (2012), No. 6, 45-58 (in Russian).
Google Scholar
[3]
V.M. Kornev, Quasi-brittle fracture diagrams under low-cycle fatigue (variable amplitude loadings), Engineering Failure Analysis. 35 (2013), P. 533-544.
DOI: 10.1016/j.engfailanal.2013.05.005
Google Scholar
[4]
M. Ya. Leonov, V.V. Pansyuk, Development of smallest cracks in a solid, Prikl. Mekh. 5 (1959), No. 4, 391-401 (in Russian).
Google Scholar
[5]
D.S. Dugdale, Yielding of steel sheets containing slits, J. Mech. Phys. Sol. 8 (1960), 100-108.
Google Scholar
[6]
H. Neuber, Kerbspannungslehre: Grunglagen fur Genaue Spannungsrechnung, Springer-Verlag, Berlin, (1937).
Google Scholar
[7]
V.V. Novozhilov, About the necessary and sufficient brittle strength criteria, Prikl. Mat. Mekh. 33 (1969), 212-222 (in Russian).
Google Scholar
[8]
V.M. Kornev, A.G. Demeshkin, Quasi-brittle fracture diagram of structured bodies in the presence of edge cracks, J. Appl. Mech. Techn. Phys. 52 (2011), No. 6, 975-985.
DOI: 10.1134/s0021894411060162
Google Scholar
[9]
V.M. Kornev, Evaluation diagram for quasi-brittle fracture of solids with structural hierarchy. Necessary and sufficient multiscale fracture criteria, Physical. Mesomech. 13 (2010), No. 1, 47-59 (in Russian).
Google Scholar
[10]
I.M. Kershtein, V.D. Klyushnikov, E.V. Lomakin, S.A. Shesterikov, Fundamental of Experimental Fracture Mechanics, Moscow universitet, Moscow, 1989 (in Russian).
Google Scholar
[11]
D. Leguillon, Strength or toughness? A criterion for crack onset at a notch, Europ. J. Mech. A/Solids, 21 (2002), 61-72.
DOI: 10.1016/s0997-7538(01)01184-6
Google Scholar
[12]
J.C. Newman, M.A. James, U. Zerbst, A review of the CTOA/CTOD fracture criterion, Engn. Fract. Mech. 70 (2003), 371-385.
DOI: 10.1016/s0013-7944(02)00125-x
Google Scholar
[13]
E.M. Castrodeza, J.E. Perez Ipina, F.L. Bastian, Fracture toughness evaluation of unidirectional fiber metal laminates using traditional CTOD () and Schwalbe () methodologies, Engn. Fract. Mech. 71 (2004), 1127-1138.
DOI: 10.1016/s0013-7944(03)00138-3
Google Scholar
[14]
V.M. Kornev, V.D. Kurguzov, N.S. Astapov, Fracture model of bimaterial under delamination of elasto-plastic structured media, Appl. Composite Mater. 20 (2013), No. 2, 129-143.
DOI: 10.1007/s10443-012-9259-6
Google Scholar
[15]
V.M. Kornev, Delamination of bimaterial and critical curves of quasi-brittle fracture in the presence of edge cracks, Advanc. Mater. Science Applic. 3 (2014), No. 4, 164-176.
DOI: 10.5963/amsa0304001
Google Scholar
[16]
M.P. Savruk, Stress Intensity Factors in Cracked Bodies, vol. 2. Fracture Mechanics and Strength of Materials, in 4 vol. Naukova Dumka, Kiev, 1988 (in Russian).
Google Scholar
[17]
Y. Murakami (ed. ), Stress Intensity Factors Handbook, in 2 vol., Pergamon Press, Oxford, (1986).
Google Scholar
[18]
H. Kitagawa, S. Takahashi, Applicability of fracture mechanics to very small cracks or the cracks in the early stages, In: Proceedings of the Second International Conference on Mechanical Behavior of Materials. Metals Park, OH: American Society for Metals, 1976, 627-631.
Google Scholar
[19]
J.J. Kruzic, R.O. Ritchie, Kitagawa-Takahashi diagrams define the limiting conditions for cyclic failure in human dentin, J. of Biomedic. Mater. Research. Part A. DOI (2006), 747-751.
DOI: 10.1002/jbm.a.30939
Google Scholar
[20]
D.C. Stouffer, J.F. Williams, A model for fatigue crack growth with a variable stress intensity factor, Engn. Fract. Mech. 11 (1979), 525-536.
DOI: 10.1016/0013-7944(79)90076-6
Google Scholar
[21]
O.N. Romaniv, S. Ya. Yarema, G.N. Nikiforchin, N.A. Makhutov, M.M. Stadnik, Fatigue and Cyclic Fracture Toughness of Structural Materials, vol. 4. Fracture Mechanics and Strength of Materials, in 4 vol. Naukova Dumka, Kiev, 1990 (in Russian).
Google Scholar
[22]
L.F. Coffin, N.Y. Schenectady, A Study of the effects of cyclic thermal stresses on a ductile metal, Trans. of the ASME. 76 (1954), No 6, 931-950.
DOI: 10.1115/1.4015021
Google Scholar
[23]
V.M. Kornev, N.S. Astapov, Fracture model of weldments under delamination, Mekhan. kompozitsionn. mater. i konstruk. 18 (2012), No. 2, 213-225 (in Russian).
Google Scholar
[24]
S.E. Kovchik, E.M. Morozov, Characteristics of transient fracture toughness of materials and methods of their determination, vol. 3. Fracture mechanics and strength of materials, in 4 vol. Naukova Dumka, Kiev, 1988 (in Russian).
Google Scholar
[25]
V.M. Kornev, Critical fracture curves and effective structure diameter for brittle and quasi-brittle materials. Physical. Mesomech. 16 (2013), No. 5, 25-34 (in Russian).
Google Scholar