[1]
S. Baste, C. Aristégui, Induced anisotropy and crack systems orientations of a ceramic matrix composite under off-principal axis, Mech. Mater. 29 (1998) 19-41.
DOI: 10.1016/s0167-6636(98)00003-9
Google Scholar
[2]
J.M. Morvan, S. Baste, Effect of the opening/closure of microcracks on the non linear behavior of a 2D C-SiC composite under cyclic loading, Int. J. Damage Mech 7 (1998) 381-402.
DOI: 10.1177/105678959800700404
Google Scholar
[3]
C. Goidescu, H. Welemane, C. Garnier, M. Fazzini, R. Brault, E. Péronnet, S. Mistou, Damage investigation in CFRP composites using full-field measurement techniques : combination of digital image stereo-correlation, infrared thermography and X-ray tomography, Comp. Part B 48 (2013).
DOI: 10.1016/j.compositesb.2012.11.016
Google Scholar
[4]
H.W. Reinhardt, Fracture mechanics of an elastic softening material like concrete, Heron 29 (1984) 1-42.
Google Scholar
[5]
J.J. Liao, M.T. Yang, H.Y. Hsien, Direct tensile behavior of a transversely isotropic rock, Int. J. Rock Mech. Min. Sci. 34 (1997) 837-849.
DOI: 10.1016/s1365-1609(96)00065-4
Google Scholar
[6]
F. Homand, D. Hoxha, T. Belem, M.N. Pons, N. Hoteit, Geometric analysis of damaged microcracking in granites, Mech. Mater. 32 (2000) 361-376.
DOI: 10.1016/s0167-6636(00)00005-3
Google Scholar
[7]
J.L. Chaboche, On the difficulties associated with the active/passive unilateral condition, Int. J. Damage Mech. 1 (1992) 148-171.
Google Scholar
[8]
F. Cormery, H. Welemane, A critical review of some damage models with unilateral effect, Mech. Res. Comm. 29 (2002) 391-395.
DOI: 10.1016/s0093-6413(02)00262-8
Google Scholar
[9]
D. Krajcinovic, Damage mechanics: accomplishments, trends and needs, Int. J. Solids Struct. 37 (2000) 267-277.
DOI: 10.1016/s0020-7683(99)00081-5
Google Scholar
[10]
D. Krajcinovic, Micromechanical basis of phenomenological models, in: D. Krajcinovic, J. Lemaitre (Eds. ), Continuum Damage Mechanics – Theory and Applications, Springer-Verlag, Wien, 1987, pp.195-206.
DOI: 10.1007/978-3-7091-2806-0_5
Google Scholar
[11]
A. Dragon, F. Cormery, T. Desoyer, D. Halm, Localized failure analysis using damage models, in: R. Chambon et al. (Eds. ), Localization and bifurcation theory for solids and rocks, Balkema, Rotterdam, 1994, pp.127-140.
Google Scholar
[12]
C. Goidescu, H. Welemane, O. Pantalé, M. Karama, D. Kondo, Anisotropic unilateral damage with initial orthotropy: a micromechanics-based approach, Int. J. Damage Mech., in press.
DOI: 10.1177/1056789514532299
Google Scholar
[13]
C. Goidescu, H. Welemane, D. Kondo, C. Gruescu, Microcracks closure effects in initially orthotropic materials, Eur. J. Mech. A/Solids 37 (2013) 172-184.
DOI: 10.1016/j.euromechsol.2012.06.001
Google Scholar
[14]
P. Germain, QS Ngyuen, P. Suquet, Continuum thermodynamics, J. Appl. Mech. 50 (1983) 1010-1020.
Google Scholar
[15]
C. Goidescu, Caractérisation et modélisation de l'endommagement par microfissuration des composites stratifiés - Apports des mesures de champs et de l'homogénéisation, Thèse de l'Univ. de Toulouse- INP Toulouse, (2011).
Google Scholar
[16]
H. Welemane, F. Cormery, Some remarks on the damage unilateral effect modelling for microcracked materials, Int. J. Damage Mech. 11 (2002), pp.65-86.
DOI: 10.1106/105678902022260
Google Scholar
[17]
S. Levasseur, H. Welemane, D. Kondo, A microcracks-induced damage model for initially anisotropic rocks accounting for microcracks closure, Int. J. Rock Mech. Mining Sci., in press.
DOI: 10.1016/j.ijrmms.2015.03.011
Google Scholar