[1]
D. Kretschmann E., Mechanical Properties of Wood, in: Wood Handb. - Wood Eng. Mater., Forest Products Laboratory, (2010).
Google Scholar
[2]
S. Holmberg, K. Persson, H. Petersson, Nonlinear mechanical behaviour and analysis of wood and fibre materials, Comput. Struct. 72 (1999) 459–480.
DOI: 10.1016/s0045-7949(98)00331-9
Google Scholar
[3]
B. Kasal, R.J. Leichti, State of the art in multiaxial phenomenological failure criteria for wood members, Prog. Struct. Eng. Mater. 7 (2005) 3–13.
DOI: 10.1002/pse.185
Google Scholar
[4]
J.C. Xavier, N.M. Garrido, M. Oliveira, J.L. Morais, P.P. Camanho, F. Pierron, A comparison between the Iosipescu and off-axis shear test methods for the characterization of Pinus Pinaster Ait, Compos. Part Appl. Sci. Manuf. 35 (2004) 827–840.
DOI: 10.1016/j.compositesa.2004.01.013
Google Scholar
[5]
Weibul W, A statistical theory of strength of materials, Proceedings of the Royal Swedish Institute, Stockholm, Sweden, (1939).
Google Scholar
[6]
T.E. Conners, Segmented models for stress-strain diagrams, Wood Sci. Tech. 23 (1989) 65–73.
DOI: 10.1007/bf00350608
Google Scholar
[7]
M. Fragiacomo, A. Ceccotti, Long-term behavior of timber-concrete composite beams, J Struct Eng. (2006) 13–22.
DOI: 10.1061/(asce)0733-9445(2006)132:1(13)
Google Scholar
[8]
N. Khorsandnia, R.H. Valipour, K. Crews, Nonlinear finite element analysis of timber beams and joints using the layered approach and hypoelastic constitutive law, Eng Struct. (2013) 606–14.
DOI: 10.1016/j.engstruct.2012.08.017
Google Scholar
[9]
X. Bo-Han, A. Bouchaı̈r, Numerical simulation of embedding strength of glued laminated timber for dowel-type fasteners, J Wood Sci. (2013) 17–23.
DOI: 10.1007/s10086-012-1296-0
Google Scholar
[10]
P. Mackenzie-Helnwein, J. Eberhardsteiner, H.A. Mang, A multi-surface plasticity model for clear wood and its application to the finite element analysis of structural details, Comput. Mech. 31 (2003) 204–218.
DOI: 10.1007/s00466-003-0423-6
Google Scholar
[11]
E. Serrano, P. Gustafsson J., Fracture mechanics in timber engineering – Strength analyses of components and joints, Mater and Struct. (2006) 87–96.
DOI: 10.1617/s11527-006-9121-0
Google Scholar
[12]
S. Holmberg, K. Persson, H. Petersson, Nonlinear mechanical behaviour and analysis of wood and fibre materials, Comp Struct. (1999) 459–480.
DOI: 10.1016/s0045-7949(98)00331-9
Google Scholar
[13]
H.R. Valipour, K. Crews, Efficient finite element modelling of timber beams strengthened with bonded fibre reinforced polymers, Constr. Build. Mater. 25 (2011) 3291–3300.
DOI: 10.1016/j.conbuildmat.2011.03.017
Google Scholar
[14]
R. Hill A., A theory of the yieldig and plastic flow of anisotropic materials, in: Proc Roy Soc Math Phys Eng Sci, 1947: p.281/97.
Google Scholar
[15]
E. Bartůňková, P. Kabele, Constitutive Model of Timber, Czech Technical University in Prague, Master Thesis, (2013).
Google Scholar
[16]
E. Šmídová, P. Kabele, Constitutive model of tensile and shear fracture in timber, in: European Mechanics Society, Gothenburg, (2014).
Google Scholar
[17]
A. Hillerborg, M. Modeér, P. Petersson, Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements, Cem. Con. Res. 6 (1976) 773–782.
DOI: 10.1016/0008-8846(76)90007-7
Google Scholar
[18]
J. Červenka, L. Jendele, V. Červenka, Atena program documentation, part 1, theory, Červenka Consulting, (2008).
Google Scholar
[19]
P.B. Lourenço, R. De Borst, J.G. Rots, A plane stress softening plasticity model for orthotropic materials, Int. J. Numer. Methods Eng. 40 (1997) 4033–4057.
DOI: 10.1002/(sici)1097-0207(19971115)40:21<4033::aid-nme248>3.0.co;2-0
Google Scholar
[20]
H. Reinhardt, H. Cornelissen, D. Hordijk, Tensile Tests and Failure Analysis of Concrete, J. Struct. Eng. 112 (1986) 2462–2477.
DOI: 10.1061/(asce)0733-9445(1986)112:11(2462)
Google Scholar
[21]
A. Reiterer, G. Sinn, S.E. Stanzl-Tschegg, Fracture characteristics of different wood species under mode I loading perpendicular to the grain, Mater. Sci. Eng. A. 332 (2002) 29–36.
DOI: 10.1016/s0921-5093(01)01721-x
Google Scholar
[22]
T. Tannert, T. Vallée, S. Franke, P. Quenneville, Comparison of test methods to determine Weibull parameter for wood, World. 15 (2012) 19.
Google Scholar
[23]
B. Franke, P. Quenneville, Analysis of the fracture behavior of Radiata Pine timber and Laminated Veneer Lumber, Eng. Fract. Mech. 116 (2014) 1–12.
DOI: 10.1016/j.engfracmech.2013.12.004
Google Scholar
[24]
N.J. Pagano, J.C. Halpin, Influence of end constraint in the testing of anisotropic bodies, J. Comp. Mat. (1968) 18–31.
Google Scholar
[25]
H.A. Richard, K. Benitz, A loading device for the creation of mixed mode in fracture mechanics, Int. J. Fract. 22 (1983) R55–R58.
DOI: 10.1007/bf00942726
Google Scholar
[26]
G. Valentin, P. Caumes, Crack propagation in mixed mode in wood: a new specimen, Wood Sci. Technol. 23 (1989) 43–53.
DOI: 10.1007/bf00350606
Google Scholar