Constitutive Model for Timber Fracture under Tensile and Shear Loads

Article Preview

Abstract:

A 2D homogeneous orthotropic constitutive model of tensile and shear fracture in timber based on fixed smeared crack approach has been developed and implemented in ATENA® finite element software. The model captures (1) elastic and inelastic behavior in small deformations range, (2) material orthotropy, both in linear and non-linear range, (3) cracking across or along fibers, and (4) behavior under unloading/reloading. In this contribution we present model validation through numerical simulations of compact tension shear (CTS) tests of Radiata Pine timber.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-144

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Kretschmann E., Mechanical Properties of Wood, in: Wood Handb. - Wood Eng. Mater., Forest Products Laboratory, (2010).

Google Scholar

[2] S. Holmberg, K. Persson, H. Petersson, Nonlinear mechanical behaviour and analysis of wood and fibre materials, Comput. Struct. 72 (1999) 459–480.

DOI: 10.1016/s0045-7949(98)00331-9

Google Scholar

[3] B. Kasal, R.J. Leichti, State of the art in multiaxial phenomenological failure criteria for wood members, Prog. Struct. Eng. Mater. 7 (2005) 3–13.

DOI: 10.1002/pse.185

Google Scholar

[4] J.C. Xavier, N.M. Garrido, M. Oliveira, J.L. Morais, P.P. Camanho, F. Pierron, A comparison between the Iosipescu and off-axis shear test methods for the characterization of Pinus Pinaster Ait, Compos. Part Appl. Sci. Manuf. 35 (2004) 827–840.

DOI: 10.1016/j.compositesa.2004.01.013

Google Scholar

[5] Weibul W, A statistical theory of strength of materials, Proceedings of the Royal Swedish Institute, Stockholm, Sweden, (1939).

Google Scholar

[6] T.E. Conners, Segmented models for stress-strain diagrams, Wood Sci. Tech. 23 (1989) 65–73.

DOI: 10.1007/bf00350608

Google Scholar

[7] M. Fragiacomo, A. Ceccotti, Long-term behavior of timber-concrete composite beams, J Struct Eng. (2006) 13–22.

DOI: 10.1061/(asce)0733-9445(2006)132:1(13)

Google Scholar

[8] N. Khorsandnia, R.H. Valipour, K. Crews, Nonlinear finite element analysis of timber beams and joints using the layered approach and hypoelastic constitutive law, Eng Struct. (2013) 606–14.

DOI: 10.1016/j.engstruct.2012.08.017

Google Scholar

[9] X. Bo-Han, A. Bouchaı̈r, Numerical simulation of embedding strength of glued laminated timber for dowel-type fasteners, J Wood Sci. (2013) 17–23.

DOI: 10.1007/s10086-012-1296-0

Google Scholar

[10] P. Mackenzie-Helnwein, J. Eberhardsteiner, H.A. Mang, A multi-surface plasticity model for clear wood and its application to the finite element analysis of structural details, Comput. Mech. 31 (2003) 204–218.

DOI: 10.1007/s00466-003-0423-6

Google Scholar

[11] E. Serrano, P. Gustafsson J., Fracture mechanics in timber engineering – Strength analyses of components and joints, Mater and Struct. (2006) 87–96.

DOI: 10.1617/s11527-006-9121-0

Google Scholar

[12] S. Holmberg, K. Persson, H. Petersson, Nonlinear mechanical behaviour and analysis of wood and fibre materials, Comp Struct. (1999) 459–480.

DOI: 10.1016/s0045-7949(98)00331-9

Google Scholar

[13] H.R. Valipour, K. Crews, Efficient finite element modelling of timber beams strengthened with bonded fibre reinforced polymers, Constr. Build. Mater. 25 (2011) 3291–3300.

DOI: 10.1016/j.conbuildmat.2011.03.017

Google Scholar

[14] R. Hill A., A theory of the yieldig and plastic flow of anisotropic materials, in: Proc Roy Soc Math Phys Eng Sci, 1947: p.281/97.

Google Scholar

[15] E. Bartůňková, P. Kabele, Constitutive Model of Timber, Czech Technical University in Prague, Master Thesis, (2013).

Google Scholar

[16] E. Šmídová, P. Kabele, Constitutive model of tensile and shear fracture in timber, in: European Mechanics Society, Gothenburg, (2014).

Google Scholar

[17] A. Hillerborg, M. Modeér, P. Petersson, Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements, Cem. Con. Res. 6 (1976) 773–782.

DOI: 10.1016/0008-8846(76)90007-7

Google Scholar

[18] J. Červenka, L. Jendele, V. Červenka, Atena program documentation, part 1, theory, Červenka Consulting, (2008).

Google Scholar

[19] P.B. Lourenço, R. De Borst, J.G. Rots, A plane stress softening plasticity model for orthotropic materials, Int. J. Numer. Methods Eng. 40 (1997) 4033–4057.

DOI: 10.1002/(sici)1097-0207(19971115)40:21<4033::aid-nme248>3.0.co;2-0

Google Scholar

[20] H. Reinhardt, H. Cornelissen, D. Hordijk, Tensile Tests and Failure Analysis of Concrete, J. Struct. Eng. 112 (1986) 2462–2477.

DOI: 10.1061/(asce)0733-9445(1986)112:11(2462)

Google Scholar

[21] A. Reiterer, G. Sinn, S.E. Stanzl-Tschegg, Fracture characteristics of different wood species under mode I loading perpendicular to the grain, Mater. Sci. Eng. A. 332 (2002) 29–36.

DOI: 10.1016/s0921-5093(01)01721-x

Google Scholar

[22] T. Tannert, T. Vallée, S. Franke, P. Quenneville, Comparison of test methods to determine Weibull parameter for wood, World. 15 (2012) 19.

Google Scholar

[23] B. Franke, P. Quenneville, Analysis of the fracture behavior of Radiata Pine timber and Laminated Veneer Lumber, Eng. Fract. Mech. 116 (2014) 1–12.

DOI: 10.1016/j.engfracmech.2013.12.004

Google Scholar

[24] N.J. Pagano, J.C. Halpin, Influence of end constraint in the testing of anisotropic bodies, J. Comp. Mat. (1968) 18–31.

Google Scholar

[25] H.A. Richard, K. Benitz, A loading device for the creation of mixed mode in fracture mechanics, Int. J. Fract. 22 (1983) R55–R58.

DOI: 10.1007/bf00942726

Google Scholar

[26] G. Valentin, P. Caumes, Crack propagation in mixed mode in wood: a new specimen, Wood Sci. Technol. 23 (1989) 43–53.

DOI: 10.1007/bf00350606

Google Scholar