Cohesive Zone Damage-Healing Model for Self-Healing Materials

Article Preview

Abstract:

A cohesive zone damage-healing model (CZDHM) derived based on the laws of thermodynamics for self-healing materials is presented. The well-known nominal, healing, and effective configurations of classical continuum damage mechanics are extended to self-healing materials. A new physically-based internal crack healing state variable is proposed for describing the healing evolution within the crack cohesive zone. The effects of temperature, crack-closure, and resting time on the healing behavior are discussed. Numerical examples are conducted to show the various novel features of the formulated CZDHM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-118

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Y. Wu, S. Meure, and D. Solomon, Self-healing polymeric materials: A review of recent developments, Progress in Polymer Science, vol. 33, pp.479-522, (2008).

DOI: 10.1016/j.progpolymsci.2008.02.001

Google Scholar

[2] K. Jud and H. H. Kausch, Load transfer through chain molecules after interpenetration at interfaces, Polymer Bulletin, vol. 1, pp.697-707, 1979/09/01 (1979).

DOI: 10.1007/bf00255445

Google Scholar

[3] S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, and S. Viswanathan, Autonomic healing of polymer composites, Nature, vol. 409, pp.794-797, (2001).

DOI: 10.1038/35057232

Google Scholar

[4] X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, and F. Wudl, A Thermally Re-mendable Cross-Linked Polymeric Material, Science, vol. 295, pp.1698-1702, (2002).

DOI: 10.1126/science.1065879

Google Scholar

[5] R. K. Abu Al-Rub, M. K. Darabi, D. N. Little, and E. A. Masad, A micro-damage healing model that improves prediction of fatigue life in asphalt mixes, International Journal of Engineering Science, vol. 48, pp.966-990, (2010).

DOI: 10.1016/j.ijengsci.2010.09.016

Google Scholar

[6] M. K. Darabi, R. K. Abu Al-Rub, and D. N. Little, A continuum damage mechanics framework for modeling micro-damage healing, International Journal of Solids and Structures, vol. 49, pp.492-513, (2012).

DOI: 10.1016/j.ijsolstr.2011.10.017

Google Scholar

[7] G. Z. Voyiadjis, A. Shojafi, G. Li, and P. Kattan, Continuum damage-healing mechanics with introduction to new healing variables , International Journal of Damage Mechanics, pp.1-24, (2011).

DOI: 10.1177/1056789510397069

Google Scholar

[8] R. A. Schapery, On the mechanics of crack closing and bonding in linear viscoelastic media, International Journal of Fracture, vol. 39, pp.163-189, (1989).

DOI: 10.1007/bf00047448

Google Scholar

[9] K. R. Rajagopal and A. R. Srinivasa, A thermodynamic frame work for rate type fluid models, Journal of Non-Newtonian Fluid Mechanics, vol. 88, pp.207-227, (2000).

DOI: 10.1016/s0377-0257(99)00023-3

Google Scholar

[10] A. A. Alsheghri and R. K. Abu Al-Rub, Thermodynamic-based cohesive zone healing model for self-healing materials, Mechanics Research Communications, p. submitted for publication, (2015).

DOI: 10.1016/j.mechrescom.2015.10.003

Google Scholar

[11] Abaqus, version 6. 12. Dassault Systemes, 2012.

Google Scholar

[12] R. P. Wool and K. M. O'Connor, A theory of crack healing in polymers, Journal of Applied Physics, vol. 52, pp.5953-5963, (1981).

Google Scholar