[1]
J. Skalny, J. Marchand, I. Odler, Sulfate Attack on Concrete, Spon Press, London, (2002).
Google Scholar
[2]
R. Tixier, B. Mobasher, Modeling of Damage in Cement-Based Materials Subjected to External Sulfate Attack, I: Formulation ASCE J. Mater. Civ. Eng, 15 (2003) 305-322.
DOI: 10.1061/(asce)0899-1561(2003)15:4(305)
Google Scholar
[3]
M. Collepardi, A state-of-the-art review on delayed ettringite attack on concrete, Cement & Concrete Composites, 25 (2003) 401–407.
DOI: 10.1016/s0958-9465(02)00080-x
Google Scholar
[4]
M. Al Shamaa, S. Lavaud, L. Divet, G. Nahas, J.M. Torrenti, Coupling between mechanical and transfer properties and expansion due to DEF in a concrete of a nuclear plant, Nuclear Engineering and Design, 266 (2014) 70-77.
DOI: 10.1016/j.nucengdes.2013.10.014
Google Scholar
[5]
O.R. Batic, C.A. Milanesi, P.J. Maiza, S.A. Marfil, Secondary ettringite formation in concrete subjected to different curing conditions, Cement and Concrete Research, 30 (2000) 1407-1412.
DOI: 10.1016/s0008-8846(00)00343-4
Google Scholar
[6]
M. Lei, L. Peng, C. Shi, S. Wang, Experimental study on the damage mechanism of tunnel structure suffering from sulfate attack, Tunnelling and underground space tech., 36 (2013) 5-13.
DOI: 10.1016/j.tust.2013.01.007
Google Scholar
[7]
R. El-Hachem, E. Rozière, F. Grondin, A. Loukili, Multi-criteria analysis of the mechanism of degradation of Portland cement based mortars exposed to external sulphate attack, Cement and Concrete Research, 42 (2012) 1327–1335.
DOI: 10.1016/j.cemconres.2012.06.005
Google Scholar
[8]
A.E. Idiart, C.M. López, I. Carol, Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: a meso-scale model, Cement & Concrete Composites 33 (2011) 411–423.
DOI: 10.1016/j.cemconcomp.2010.12.001
Google Scholar
[9]
S. Sarkar, S. Mahadevan, J.C.L. Meeussen, H. van der Sloot, D.S. Kosson, Numerical simulation of cementitious materials degradation under external sulfate attack, Cement and Concrete Composites 32 (2010) 241-252.
DOI: 10.1016/j.cemconcomp.2009.12.005
Google Scholar
[10]
N. Cefis, C. Comi, Damage modelling in concrete subject to sulfate attack, Fracture and Structural Integrity 29 (2014) 222-229.
DOI: 10.3221/igf-esis.29.19
Google Scholar
[11]
O. Coussy, Poromechanics, John Wiley & Sons, (2004).
Google Scholar
[12]
M. Mainguy, O. Coussy, V. Baroghel-Bouny, Role of air pressure in drying of weakly permeable materials. Journal of engineering mechanics 127 (2001), 582-592.
DOI: 10.1061/(asce)0733-9399(2001)127:6(582)
Google Scholar
[13]
E. Samson, J. Marchand, Modeling ion and fluid transport in unsaturated cement systems for isothermal conditions, Cement and Concrete Research 35. 1 (2005): 141-153.
DOI: 10.1016/j.cemconres.2004.07.016
Google Scholar
[14]
P. Akpinar, I. Casanova, A combined study of expansive and tensile strength evolution of mortars under sulfate attack: implication on durability assessment, Materiales de Construcción, Soil science society of America journal 44. 5 (1980).
DOI: 10.3989/mc.2010.47908
Google Scholar
[15]
C. Comi, U. Perego, Fracture energy based bi-dissipative damage model for concrete, International Journal of Solids and Structures, 38 (2001) 6427-6454.
DOI: 10.1016/s0020-7683(01)00066-x
Google Scholar
[16]
V. Baroghel-Bouny, M. Mainguy, T. Lassabatere, O. Coussy, Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials, Cement and Concrete Research, 29 (1999).
DOI: 10.1016/s0008-8846(99)00102-7
Google Scholar
[17]
M.T. Van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil science society of America journal 44. 5 (1980): 892-898.
DOI: 10.2136/sssaj1980.03615995004400050002x
Google Scholar