On the Use of the Generalized Eigenstrain Method in the Modeling of Coupling between Damage and Corrosion

Article Preview

Abstract:

The coupling between mechanical and chemical behaviors is investigated. The Generalized Eigenstrain Method is used and enables to take easily into account several couplings, such as damage and corrosion. Modeling is then performed and compared for different configurations. Chemical reactions and diffusion effects are thus described in order to improve accuracy of such a micromechanical time-dependent model. Application is then performed on a steel reinforced concrete material. Moreover, a particular and original coupling has been introduced, which is justified by thermodynamics arguments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-67

Citation:

Online since:

August 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Husem, S. Gozutok, Const. Build. Mat. 19 (2005) 49-53.

Google Scholar

[2] J. Lee, Y. Xi, K. Willam, Y. Jung, Cement and Concrete Research 39 (2009) 754-762.

Google Scholar

[3] C. Redon, J.L. Chermant, Cement and Concrete Composite 21 (1999) 197-204.

Google Scholar

[4] V.T. Ngala, C.L. Page, L.J. Parrott, S.W. Yu, Cement and Concrete Research 25 (1995) 819-826.

Google Scholar

[5] Y.F. Houst, F.H. Wittmann, Cement and Concrete Research 24 (1994) 1165-1176.

Google Scholar

[6] Y.F. Houst, F.H. Wittmann, Cement and Concrete Research 32 (2002) 1923-(1930).

Google Scholar

[7] P. Sorioushian, M. Elzafraney, Cement and Concrete Composites 26 (2004) 853-859.

Google Scholar

[8] A. Juvekar, M.M. Sharma, Chem. Eng. Sci. 28 (1973) 825-837.

Google Scholar

[9] J. Bear, Y. Bachmat, Introduction to modeling of transport phenomena in porous media, Kluwer Academic Publishers, (1991).

Google Scholar

[10] M. Thiery, Modélisation de la carbonatation atmosphérique des matériaux cimentaires, PhD Thesis, Ecole Nationale des Ponts et Chaussées, (2005).

DOI: 10.1016/s0152-9668(03)80006-2

Google Scholar

[11] B. Panicaud, M. Chemkhi, A. Roos, D. Retraint, Applied Surface Science 258 (2012) 6611-6620.

DOI: 10.1016/j.apsusc.2012.03.089

Google Scholar

[12] I.B. Topcu, T. Bilir, A.R. Boga. Const. Build. Mat. 24 (2010) 741-748.

Google Scholar

[13] T. Mura, Micromechanics of Defects in Solids, 2nd ed, Kluwer Academic, The Netherlands, (1987).

Google Scholar

[14] J. Lemaitre, J.L. Chaboche, Mécanique des matériaux solides, 2nd ed, Dunod, Paris, (2001).

Google Scholar

[15] C. Vidal, G. Dewel, P. Borckmans, Au-delà de l'équilibre, Hermann, (1997).

Google Scholar

[16] L. Chernin, D. Val, Const. Build. Mat. 25 (2011) 1854-1869.

Google Scholar

[17] G.J. Dvorak, Y. Benveniste, Proc. R. Soc. Lond. A 437 (1992) 291-310.

Google Scholar

[18] J.L. Chaboche, S. Kruch, J.F. Maire, T. Pottier, Int. J. of Plasticity 17 (2001) 411-439.

DOI: 10.1016/s0749-6419(00)00056-5

Google Scholar

[19] A. Roos, J.L. Chaboche, L. Gélébart, J. Crépin, Int. J. of Plasticity 20 (2004) 811-830.

DOI: 10.1016/j.ijplas.2003.08.005

Google Scholar

[20] B. Richard, F. Ragueneau, C. Cremona, L. Adelaide, J.L. Tailhan, Eng. Frac. Mech. 77 (2010) 951-973.

DOI: 10.1016/j.engfracmech.2010.01.017

Google Scholar

[21] P.J. Sanchez, A.E. Huespe, J. Oliver, S. Toro, Int. J. Sol. Struc. 47 (2010) 559-570.

Google Scholar