[1]
A. Alliche, Damage model for fatigue loading of concrete, International Journal of Fatigue, 2004, 26 915-921.
DOI: 10.1016/j.ijfatigue.2004.02.006
Google Scholar
[2]
G.M. Nordby, Fatigue of concrete-A review of research, ACI Journal Proceedings, 1958, 55(8) 191-219.
Google Scholar
[3]
E.W. Bennett, S.E.S.J. Muir, Some fatigue tests of high-strength concrete in axial compression, Magazine of Concrete Research, 1967, 19(59) 113-117.
DOI: 10.1680/macr.1967.19.59.113
Google Scholar
[4]
J.O. Holmen, Fatigue of concrete by constant and variable amplitude loading, ACI Special Publication, 1982, 75 71-110.
Google Scholar
[5]
J. Xiao, H. Li, Z. Yang, Fatigue behavior of recycled aggregate concrete under compression and bending cyclic loadings, Construction and Building Materials, 2013, 38 681–688.
DOI: 10.1016/j.conbuildmat.2012.09.024
Google Scholar
[6]
J. Zhang, H. Stang, V.C. Li, Fatigue life prediction of fiber reinforced concrete under flexural load, International Journal of Fatigue, 1999, 21(10) 1033-1049.
DOI: 10.1016/s0142-1123(99)00093-6
Google Scholar
[7]
R. Breitenbücher, H. Ibuk, Experimentally based investigations on the degradation-process of concrete under cyclic load, Materials and Structures, 2006, 39 717-724.
DOI: 10.1617/s11527-006-9097-9
Google Scholar
[8]
S.P. Shah, S. Chandra, Fracture of concrete subjected to cyclic and sustained loading, ACI Journal Proceedings, 1970, 67(10) 816-827.
DOI: 10.14359/7312
Google Scholar
[9]
O. Nguyen, E.A. Repetto, M. Ortiz, R.A. Radovizky, A cohesive model of fatigue crack growth, International Journal of Fracture, 2001, 110(4) 351-369.
Google Scholar
[10]
B. Yang, S. Mall, R.K. Chandar, A cohesive zone model for fatigue crack growth in quasibrittle materials, International Journal of Solids and Structures, 2001, 38(22) 3927-3944.
DOI: 10.1016/s0020-7683(00)00253-5
Google Scholar
[11]
J.J. Marigo, Modelling of brittle and fatigue damage for elastic material by growth of microvoids, Engineering Fracture Mechanics, 1985, 21(4) 861-874.
DOI: 10.1016/0013-7944(85)90093-1
Google Scholar
[12]
J.L. Le, Z.P. Bažant, Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures I: Strength, static crack growth, lifetime and scaling, Journal of the Mechanics and Physics of Solids, 2011a, 59 1291-1321.
DOI: 10.1016/j.jmps.2011.03.002
Google Scholar
[13]
J.L. Le, Z.P. Bažant, Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures II: Fatigue crack growth, lifetime and scaling, Journal of the Mechanics and Physics of Solids, 2011b, 59 1322-1337.
DOI: 10.1016/j.jmps.2011.03.007
Google Scholar
[14]
J.W. Ju, On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects, International Journal of Solids and Structures, 1989, 25(7) 803-833.
DOI: 10.1016/0020-7683(89)90015-2
Google Scholar
[15]
J.Y. Wu, J. Li, R. Faria, An energy release rate-based plastic-damage model for concrete, International Journal of Solids and Structures, 2006, 43 583-612.
DOI: 10.1016/j.ijsolstr.2005.05.038
Google Scholar
[16]
X. D. Ren, S. J. Zeng, J. Li, A rate-dependent stochastic damage-plasticity model for quasi-brittle materials, Computational Mechanics, 2014, DOI 10. 1007/s00466-014-1100-7.
DOI: 10.1007/s00466-014-1100-7
Google Scholar
[17]
R. Faria, J. Oliver, M. Cervera, A strain-based plastic viscous-damage model for massive concrete structures, International Journal of Solids Structures, 1998, 35(14) 1533-1558.
DOI: 10.1016/s0020-7683(97)00119-4
Google Scholar
[18]
K.D. Raithby, Flexural fatigue behaviour of plain concrete, Fatigue of Engineering Materials and Structures, 1979, 2 269-278.
DOI: 10.1111/j.1460-2695.1979.tb01085.x
Google Scholar