[1]
F. Preisach, Über die magnetische Nachwirkung, Z . Phys., 94 (1935) pp.277-302.
Google Scholar
[2]
V.A. Lubarda, D. Sumarac and D. Krajcinovic, Hysteretic response of ductile materials subjected to cyclic loads, in: J.W. Ju (Ed. ), Recent Advances in Damage Mechanics and Plasticity, ASME Publication, AMD, 123 (1992) pp.145-157.
Google Scholar
[3]
V.A. Lubarda, D. Sumarac and D. Krajcinovic, Preisach model and hysteretic behavior of ductile materials. Eur. J. Mech., A/Solids, 12, (4) (1993) 445-470.
Google Scholar
[4]
D. Sumarac, S. Stosic, The Preisach model for the cyclic bending of elasto-plastic beams, Eur. J. Mech., A/Solids 15 (1) (1996) 155-172.
Google Scholar
[5]
D. Šumarac and Z. Perović, Cyclic plasticity of trusses, Archive of Applied Mechanics: DOI 10. 1007/s00419-014-0954-7, Published online 03 dec (2014).
DOI: 10.1007/s00419-014-0954-7
Google Scholar
[6]
D. Šumarac and Z. Petrašković, Hysteretic behavior of rectangular tube (box) sections based on Preisach model, Archive of Applied Mechanics, 82 (10) (2012) 1663-1673.
DOI: 10.1007/s00419-012-0663-z
Google Scholar
[7]
K.J. Bathe, Finite Element Procedures, Prentice Hall, (1996).
Google Scholar
[8]
D.W. Iwan, On a class of models for the yielding behavior of continuous and composite systems, J. Appl. Mech., 34 (1967) 612-617.
DOI: 10.1115/1.3607751
Google Scholar
[9]
D.I. Mayergoyz, Mathematical Models of Hysteresis, Springer-Verlag, New York, (1991).
Google Scholar
[10]
D. Kujawski and E. Krempl, The Rate (Time)-Dependent Behaviour of Ti-7Al-2Cb-1Ta Titanium Alloy at Room Temperature Under Quasi Static Monotonic and Cyclic Loading, J. Appl. Mech., 48 (1981) 55-63.
DOI: 10.1115/1.3157592
Google Scholar
[11]
J.R. Asaro, Elastic-plastic memory and kinematic type hardening, Acta Metall. 23 (1975) 1255-1265.
DOI: 10.1016/0001-6160(75)90044-9
Google Scholar
[12]
R. Bouc, Modèle Mathématique d'Hystérésis, Acustica, 24 (1971) p.16—25 (inFrench).
Google Scholar
[13]
K.Y. Wen, Method for Random Vibration of Hysteretic Systems, Journal of the Engineering Mechanics Division, Proc. ASCE, 102 (1976) pp.249-263.
DOI: 10.1061/jmcea3.0002106
Google Scholar
[14]
A. Visintin, Mathematical Models of Hysteresis, Dipartimento di Matematica dell'Universita degli Studi di Trento, Italia, (2005).
DOI: 10.3934/dcdsb.2013.18.551
Google Scholar
[15]
Sumarac, D. and Krajcinovic, D.: A Self-consistent Model for Microcrack-weakened Solids, Mechanics of Materials, 6, pp.39-52, (1987).
DOI: 10.1016/0167-6636(87)90021-4
Google Scholar
[16]
Sumarac,D. and Krajcinovic, D.: A Mesomechanical Model for Brittle Deformation Processes, Part II, Journal of Applied Mechanics, 56, pp.57-62, (1989).
DOI: 10.1115/1.3176066
Google Scholar
[17]
de Borst, R., Pamin, J., Geers, M.G.D.: On coupled gradient – dependent plasticity and damage theories with view to localization analysis, Eur. J. Mech. A/Solids, 18, 939-962, (1999).
DOI: 10.1016/s0997-7538(99)00114-x
Google Scholar
[18]
Panis, M.W., van der Slius, O., Peerlings, R.H.J.: Experimental identification of damage evolution law for steel, Eindhoven, (2004).
Google Scholar