Elastoplastic and Damage Analysis of Trusses Subjected to Cyclic Loading

Article Preview

Abstract:

In the present paper, the Preisach model of hysteresis is extended to structural analysis of trusses damaged under cyclic loading in plastic range. Parameters for the Preisach model of cyclic plasticity are obtained from uniaxial loading experiment. Damage, as a consequence of micro cracks appearance due to alternating loading in plastic domain, is modeled using brittle elements according to Preisach procedure. Results of this research are compared with the already existing in the literature. In the paper examples of trusses under various cyclic loadings are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

68-79

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Preisach, Über die magnetische Nachwirkung, Z . Phys., 94 (1935) pp.277-302.

Google Scholar

[2] V.A. Lubarda, D. Sumarac and D. Krajcinovic, Hysteretic response of ductile materials subjected to cyclic loads, in: J.W. Ju (Ed. ), Recent Advances in Damage Mechanics and Plasticity, ASME Publication, AMD, 123 (1992) pp.145-157.

Google Scholar

[3] V.A. Lubarda, D. Sumarac and D. Krajcinovic, Preisach model and hysteretic behavior of ductile materials. Eur. J. Mech., A/Solids, 12, (4) (1993) 445-470.

Google Scholar

[4] D. Sumarac, S. Stosic, The Preisach model for the cyclic bending of elasto-plastic beams, Eur. J. Mech., A/Solids 15 (1) (1996) 155-172.

Google Scholar

[5] D. Šumarac and Z. Perović, Cyclic plasticity of trusses, Archive of Applied Mechanics: DOI 10. 1007/s00419-014-0954-7, Published online 03 dec (2014).

DOI: 10.1007/s00419-014-0954-7

Google Scholar

[6] D. Šumarac and Z. Petrašković, Hysteretic behavior of rectangular tube (box) sections based on Preisach model, Archive of Applied Mechanics, 82 (10) (2012) 1663-1673.

DOI: 10.1007/s00419-012-0663-z

Google Scholar

[7] K.J. Bathe, Finite Element Procedures, Prentice Hall, (1996).

Google Scholar

[8] D.W. Iwan, On a class of models for the yielding behavior of continuous and composite systems, J. Appl. Mech., 34 (1967) 612-617.

DOI: 10.1115/1.3607751

Google Scholar

[9] D.I. Mayergoyz, Mathematical Models of Hysteresis, Springer-Verlag, New York, (1991).

Google Scholar

[10] D. Kujawski and E. Krempl, The Rate (Time)-Dependent Behaviour of Ti-7Al-2Cb-1Ta Titanium Alloy at Room Temperature Under Quasi Static Monotonic and Cyclic Loading, J. Appl. Mech., 48 (1981) 55-63.

DOI: 10.1115/1.3157592

Google Scholar

[11] J.R. Asaro, Elastic-plastic memory and kinematic type hardening, Acta Metall. 23 (1975) 1255-1265.

DOI: 10.1016/0001-6160(75)90044-9

Google Scholar

[12] R. Bouc, Modèle Mathématique d'Hystérésis, Acustica, 24 (1971) p.16—25 (inFrench).

Google Scholar

[13] K.Y. Wen, Method for Random Vibration of Hysteretic Systems, Journal of the Engineering Mechanics Division, Proc. ASCE, 102 (1976) pp.249-263.

DOI: 10.1061/jmcea3.0002106

Google Scholar

[14] A. Visintin, Mathematical Models of Hysteresis, Dipartimento di Matematica dell'Universita degli Studi di Trento, Italia, (2005).

DOI: 10.3934/dcdsb.2013.18.551

Google Scholar

[15] Sumarac, D. and Krajcinovic, D.: A Self-consistent Model for Microcrack-weakened Solids, Mechanics of Materials,  6,  pp.39-52, (1987).

DOI: 10.1016/0167-6636(87)90021-4

Google Scholar

[16] Sumarac,D. and Krajcinovic, D.: A Mesomechanical Model for Brittle Deformation Processes, Part II, Journal  of  Applied Mechanics, 56, pp.57-62, (1989).

DOI: 10.1115/1.3176066

Google Scholar

[17] de Borst, R., Pamin, J., Geers, M.G.D.: On coupled gradient – dependent plasticity and damage theories with view to localization analysis, Eur. J. Mech. A/Solids, 18, 939-962, (1999).

DOI: 10.1016/s0997-7538(99)00114-x

Google Scholar

[18] Panis, M.W., van der Slius, O., Peerlings, R.H.J.: Experimental identification of damage evolution law for steel, Eindhoven, (2004).

Google Scholar