Modeling of Stress-State-Dependent Damage and Failure of Ductile Metals

Article Preview

Abstract:

The paper discusses an anisotropic continuum damage model. It takes into account the effect of stress state on damage and failure conditions as well as on evolution equations of damage strains. To validate the proposed framework experiments with biaxially loaded specimens and corresponding numerical simulations are performed covering a wide range of stress states. In addition, scanning electron microscope images of the fracture surfaces show different fracture modes corresponding to stress states revealed by numerical analyses.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-42

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Bai and T. Wierzbicki. A new model of metal plasticity and fracture with pressure and Lode dependence. International Journal of Plasticity, 24: 1071-1096, (2008).

DOI: 10.1016/j.ijplas.2007.09.004

Google Scholar

[2] Y. Bao and T. Wierzbicki. On the fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences, 46: 81-98, (2004).

DOI: 10.1016/j.ijmecsci.2004.02.006

Google Scholar

[3] I. Barsoum and J. Faleskog. Rupture mechanisms in combined tension and shear - Experiments. International Journal of Solids and Structures, 44: 1768-1786, (2007).

DOI: 10.1016/j.ijsolstr.2006.09.031

Google Scholar

[4] R. Becker, A. Needleman, O. Richmond, and V. Tvergaard. Void growth and failure in notched bars. Journal of the Mechanics and Physics of Solids, 36: 317-351, (1988).

DOI: 10.1016/0022-5096(88)90014-2

Google Scholar

[5] N. Bonora, D. Gentile, A. Pirondi, and G. Newaz. Ductile damage evolution under triaxial state of stress: theory and experiments. International Journal of Plasticity, 21: 981-1007, (2005).

DOI: 10.1016/j.ijplas.2004.06.003

Google Scholar

[6] W. Brocks, D. -Z. Sun, and A. Hönig. Verification of the transferability of micromechanical parameters by cell model calculations with visco-plastic material. International Journal of Plasticity, 11: 971-989, (1995).

DOI: 10.1016/s0749-6419(95)00039-9

Google Scholar

[7] M. Brünig. An anisotropic ductile damage model based on irreversible thermodynamics. International Journal of Plasticity, 19: 1679-1713, (2003).

DOI: 10.1016/s0749-6419(02)00114-6

Google Scholar

[8] M. Brünig, O. Chyra, D. Albrecht, L. Driemeier, and M. Alves. A ductile damage criterion at various stress triaxialities. International Journal of Plasticity, 24: 1731-1755, (2008).

DOI: 10.1016/j.ijplas.2007.12.001

Google Scholar

[9] M. Brünig, S. Gerke, and V. Hagenbrock. Micro-mechanical studies on the effect of the stress triaxiality and the Lode parameter on ductile damage. International Journal of Plasticity, 50: 49- 65, (2013).

DOI: 10.1016/j.ijplas.2013.03.012

Google Scholar

[10] Michael Brünig, Steffen Gerke, and Daniel Brenner. New 2D-experiments and numerical simulations on stress-state-dependence of ductile damage and failure. Procedia Materials Science, 3: 177-182, (2014).

DOI: 10.1016/j.mspro.2014.06.032

Google Scholar

[11] H.B. Chew, T.F. Guo, and L. Cheng. Effects of pressure-sensitivity and plastic dilatancy on void growth and interaction. International Journal of Solids and Structures, 43: 6380-6397, (2006).

DOI: 10.1016/j.ijsolstr.2005.10.014

Google Scholar

[12] L. Driemeier, M. Brünig, G. Micheli, and M. Alves. Experiments on stress-triaxiality dependence of mterial behavior of aluminum alloys. Mechanics of Materials, 42: 207-217, (2010).

DOI: 10.1016/j.mechmat.2009.11.012

Google Scholar

[13] M. Dunand and D. Mohr. On the predictive capabilities of the shear modified Gurson and the modified Mohr-Coulomb fracture models over a wide range of stress triaxialities and Lode angles. Journal of the Mechanics and Physics of Solids, 59: 1374-1394, (2011).

DOI: 10.1016/j.jmps.2011.04.006

Google Scholar

[14] J. Faleskog and I. Barsoum. Tension-torsion fracture experiments - Part I: Experiments and a procedure to evaluate the equivalent plastic strain. International Journal of Solids and Structures, 50: 4241-4257, (2013).

DOI: 10.1016/j.ijsolstr.2013.08.029

Google Scholar

[15] X. Gao, G. Zhang, and C. Roe. A study on the effect of the stress state on ductile fracture. International Journal of Damage Mechanics, 19: 75-94, (2010).

DOI: 10.1177/1056789509101917

Google Scholar

[16] J. W. Hancock and A. C. Mackenzie. On the mechanics of ductile failure in high-strength steels subjected to multi-axial stress-states. Journal of the Mechanics and Physics of Solids, 24: 147- 169, (1976).

DOI: 10.1016/0022-5096(76)90024-7

Google Scholar

[17] D. Kulawinski, K. Nagel, S. Henkel, P. Hübner, H. Fischer, M. Kuna, and H. Biermann. Characterization of stress-strain behavior of a cast trip steel under different biaxial planar load ratios. Engineering Fracture Mechanics, 78: 1684-1695, (2011).

DOI: 10.1016/j.engfracmech.2011.02.021

Google Scholar

[18] M. Kuna and D.Z. Sun. Three-dimensional cell model analyses of void growth in ductile materials. International Journal of Fracture, 81: 235-258, (1996).

DOI: 10.1007/bf00039573

Google Scholar

[19] T. Kuwabara. Advances in experiments on metal sheet and tubes in support of constitutive modeling and forming simulations. International Journal of Plasticity, 23: 385-419, (2007).

DOI: 10.1016/j.ijplas.2006.06.003

Google Scholar

[20] D. Mohr and S. Henn. Calibration of stress-triaxiality dependent crack formation criteria: A new hybrid experimental-numerical method. Experimental Mechanics, 47: 805-820, (2007).

DOI: 10.1007/s11340-007-9039-7

Google Scholar

[21] A. Needleman and A.S. Kushner. An analysis of void distribution effects on plastic flow in porous solids. European Journal of Mechanics A/Solids, 9: 193-206, (1990).

Google Scholar

[22] K.S. Zhang, J.B. Bai, and D. Francois. Numerical analysis of the influence of the Lode parameter on void growth. International Journal of Solids and Structures, 38: 5847-5856, (2001).

DOI: 10.1016/s0020-7683(00)00391-7

Google Scholar