[1]
Y. Bai and T. Wierzbicki. A new model of metal plasticity and fracture with pressure and Lode dependence. International Journal of Plasticity, 24: 1071-1096, (2008).
DOI: 10.1016/j.ijplas.2007.09.004
Google Scholar
[2]
Y. Bao and T. Wierzbicki. On the fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences, 46: 81-98, (2004).
DOI: 10.1016/j.ijmecsci.2004.02.006
Google Scholar
[3]
I. Barsoum and J. Faleskog. Rupture mechanisms in combined tension and shear - Experiments. International Journal of Solids and Structures, 44: 1768-1786, (2007).
DOI: 10.1016/j.ijsolstr.2006.09.031
Google Scholar
[4]
R. Becker, A. Needleman, O. Richmond, and V. Tvergaard. Void growth and failure in notched bars. Journal of the Mechanics and Physics of Solids, 36: 317-351, (1988).
DOI: 10.1016/0022-5096(88)90014-2
Google Scholar
[5]
N. Bonora, D. Gentile, A. Pirondi, and G. Newaz. Ductile damage evolution under triaxial state of stress: theory and experiments. International Journal of Plasticity, 21: 981-1007, (2005).
DOI: 10.1016/j.ijplas.2004.06.003
Google Scholar
[6]
W. Brocks, D. -Z. Sun, and A. Hönig. Verification of the transferability of micromechanical parameters by cell model calculations with visco-plastic material. International Journal of Plasticity, 11: 971-989, (1995).
DOI: 10.1016/s0749-6419(95)00039-9
Google Scholar
[7]
M. Brünig. An anisotropic ductile damage model based on irreversible thermodynamics. International Journal of Plasticity, 19: 1679-1713, (2003).
DOI: 10.1016/s0749-6419(02)00114-6
Google Scholar
[8]
M. Brünig, O. Chyra, D. Albrecht, L. Driemeier, and M. Alves. A ductile damage criterion at various stress triaxialities. International Journal of Plasticity, 24: 1731-1755, (2008).
DOI: 10.1016/j.ijplas.2007.12.001
Google Scholar
[9]
M. Brünig, S. Gerke, and V. Hagenbrock. Micro-mechanical studies on the effect of the stress triaxiality and the Lode parameter on ductile damage. International Journal of Plasticity, 50: 49- 65, (2013).
DOI: 10.1016/j.ijplas.2013.03.012
Google Scholar
[10]
Michael Brünig, Steffen Gerke, and Daniel Brenner. New 2D-experiments and numerical simulations on stress-state-dependence of ductile damage and failure. Procedia Materials Science, 3: 177-182, (2014).
DOI: 10.1016/j.mspro.2014.06.032
Google Scholar
[11]
H.B. Chew, T.F. Guo, and L. Cheng. Effects of pressure-sensitivity and plastic dilatancy on void growth and interaction. International Journal of Solids and Structures, 43: 6380-6397, (2006).
DOI: 10.1016/j.ijsolstr.2005.10.014
Google Scholar
[12]
L. Driemeier, M. Brünig, G. Micheli, and M. Alves. Experiments on stress-triaxiality dependence of mterial behavior of aluminum alloys. Mechanics of Materials, 42: 207-217, (2010).
DOI: 10.1016/j.mechmat.2009.11.012
Google Scholar
[13]
M. Dunand and D. Mohr. On the predictive capabilities of the shear modified Gurson and the modified Mohr-Coulomb fracture models over a wide range of stress triaxialities and Lode angles. Journal of the Mechanics and Physics of Solids, 59: 1374-1394, (2011).
DOI: 10.1016/j.jmps.2011.04.006
Google Scholar
[14]
J. Faleskog and I. Barsoum. Tension-torsion fracture experiments - Part I: Experiments and a procedure to evaluate the equivalent plastic strain. International Journal of Solids and Structures, 50: 4241-4257, (2013).
DOI: 10.1016/j.ijsolstr.2013.08.029
Google Scholar
[15]
X. Gao, G. Zhang, and C. Roe. A study on the effect of the stress state on ductile fracture. International Journal of Damage Mechanics, 19: 75-94, (2010).
DOI: 10.1177/1056789509101917
Google Scholar
[16]
J. W. Hancock and A. C. Mackenzie. On the mechanics of ductile failure in high-strength steels subjected to multi-axial stress-states. Journal of the Mechanics and Physics of Solids, 24: 147- 169, (1976).
DOI: 10.1016/0022-5096(76)90024-7
Google Scholar
[17]
D. Kulawinski, K. Nagel, S. Henkel, P. Hübner, H. Fischer, M. Kuna, and H. Biermann. Characterization of stress-strain behavior of a cast trip steel under different biaxial planar load ratios. Engineering Fracture Mechanics, 78: 1684-1695, (2011).
DOI: 10.1016/j.engfracmech.2011.02.021
Google Scholar
[18]
M. Kuna and D.Z. Sun. Three-dimensional cell model analyses of void growth in ductile materials. International Journal of Fracture, 81: 235-258, (1996).
DOI: 10.1007/bf00039573
Google Scholar
[19]
T. Kuwabara. Advances in experiments on metal sheet and tubes in support of constitutive modeling and forming simulations. International Journal of Plasticity, 23: 385-419, (2007).
DOI: 10.1016/j.ijplas.2006.06.003
Google Scholar
[20]
D. Mohr and S. Henn. Calibration of stress-triaxiality dependent crack formation criteria: A new hybrid experimental-numerical method. Experimental Mechanics, 47: 805-820, (2007).
DOI: 10.1007/s11340-007-9039-7
Google Scholar
[21]
A. Needleman and A.S. Kushner. An analysis of void distribution effects on plastic flow in porous solids. European Journal of Mechanics A/Solids, 9: 193-206, (1990).
Google Scholar
[22]
K.S. Zhang, J.B. Bai, and D. Francois. Numerical analysis of the influence of the Lode parameter on void growth. International Journal of Solids and Structures, 38: 5847-5856, (2001).
DOI: 10.1016/s0020-7683(00)00391-7
Google Scholar