[1]
A.A. Fakhimi, C. Fairhurst, A model for the Time-dependent behavior of rock. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 31 (1994) 117-126.
Google Scholar
[2]
D.F. Malan, Simulating the time-dependent behavior of excavation in hard rock. Rock Mech. Rock Eng. 35 (2002) 225-254.
DOI: 10.1007/s00603-002-0026-0
Google Scholar
[3]
Z. Hou, Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities. Int. J. Rock Mech. Min. Sci. 40 (2003) 725-738.
DOI: 10.1016/s1365-1609(03)00064-9
Google Scholar
[4]
G.N. Boukharov, M.W. Chanda, N.G. Boukharov, The three processes of brittle crystalline rock creep. In. J. Rock Mech. Min. Sci & Geomech. Abstr. 32 (1995) 325-335.
DOI: 10.1016/0148-9062(94)00048-8
Google Scholar
[5]
W.M. Wang, L.J. Sluys, R.D. Borst, Viscoplasticity for instability due to strain softening and strain-rate softeting. Int. J. Numer. Meth. Eng. 40 (1997) 839-3 864.
DOI: 10.1002/(sici)1097-0207(19971030)40:20<3839::aid-nme245>3.0.co;2-6
Google Scholar
[6]
J.S. Jin, N.D. Cristescu, An elastic/viscoplastic model for transient creep of rock salt. Int. J. Plast. 14 (1998) 85-107.
DOI: 10.1016/s0749-6419(97)00042-9
Google Scholar
[7]
N. Cristescu, Damge and failure of viscopalstic rock-like material. Int.J. Plast. 2(1986)189-204.
Google Scholar
[8]
K.S. Chan, S. R. Bodner, A. F. Fossum, D. E. Munson, A damage mechanics treatment of creep failure in rock salt. Int. J. Damage Mech. 6 (1997) 122-152.
DOI: 10.1177/105678959700600201
Google Scholar
[9]
J. Betten, S. Sklepus, A. Zolochevsky, A creep damage model for initially isotropic materials with different properties in tension and compression. Eng. Fract. Mech. 59 (1998) 623-641.
DOI: 10.1016/s0013-7944(97)00143-4
Google Scholar
[10]
M.F. Horstemeyer, D.J. Bammann, Historical review of internal state variable theory for inelasticity. Int. J. Plast. 26 (2010) 1310-1334.
DOI: 10.1016/j.ijplas.2010.06.005
Google Scholar
[11]
J. Lubliner, On the thermodynamic foundations of non-linear solids mechanics. Int. J. Non-Linear Mech. 7 (1972) 237-254.
DOI: 10.1016/0020-7462(72)90048-0
Google Scholar
[12]
S.W. Park, R.A. Schapery, A viscoelastic constitutive model for particulate composites with growing damage. Int. J. Solids Struct. 34 (1997) 931-947.
DOI: 10.1016/s0020-7683(96)00066-2
Google Scholar
[13]
H. R. Zhu, L. Sun, A viscoelastic-viscoplastic damage constitutive model for asphalt mixtures based on thermodynamics. Int. J. Plast. 40 (2013) 81-100.
DOI: 10.1016/j.ijplas.2012.07.005
Google Scholar
[14]
J.L. Chaboche, Thermodynamic formulation of application to the viscoplasticity and viscoelasticity of metal and polymers. Int. J. Solids. Struct. 34 (1997) 2239-2254.
DOI: 10.1016/s0020-7683(96)00162-x
Google Scholar
[15]
R.A. Schapery, Nonlinear Viscoelastic and Viscoplastic Constitutive Equations Based on Thermodynamics. Mech. Time Depend. Mater. 1 (1997) 209-240.
Google Scholar
[16]
G. Z. Voyiadjis, A. Zolochevsky, Thermodynamic modeling of creep damage in materials with different properties in tension and compression. Int. J. Solids Struct. 37 (2000) 281- 303.
DOI: 10.1016/s0020-7683(99)00031-1
Google Scholar
[21]
N.R. Hansen, H.L. Schreyer, A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int. J. Solids. Struct. 3 (1994) 359-389.
DOI: 10.1016/0020-7683(94)90112-0
Google Scholar
[17]
J.R. Rice, Inelastic constitutive relation for solids: an internal- variable theory and its application to metal plasticity. J. Mech. Phys. 19 (1971) 433-455.
DOI: 10.1016/0022-5096(71)90010-x
Google Scholar
[18]
W.H. Haslach, A non-equilibrium thermodynamic geometric structure for thermoviscoplasticity with maximum dissipation. Int. J. Plast. 18 (2002) 127-153.
DOI: 10.1016/s0749-6419(00)00046-2
Google Scholar
[19]
Q. Yang, Y. R. Liu, J.Q. Bao, Hamilton's principle of entropy production for creep and relaxation processes. J. Eng. Mater. Technol. 132 (2010) 0110181-0110185.
Google Scholar
[20]
Q. Yang, X. Chen, W. Y. Zhuo, Microscopic thermodynamic basis of normality structure of inelastic constitutive relations. Mech. Res. Commun. 32 (2005) 590-596.
DOI: 10.1016/j.mechrescom.2005.01.009
Google Scholar
[21]
H. Ziegler, An Introduction to Thermomechanics. North-Holland, Amsterdam, (1977).
Google Scholar
[22]
Q. Yang, X. Chen, W. Y. Zhuo, On multiscale significance of Rice's normality structure. Mech. Res. Commun. 33 (2006) 667-673.
Google Scholar
[23]
L. Zhang, Y.R. Liu, Q. Yang, L.J. Xue, An internal state variable viscoelastic-viscoplastic constitutive equation with damage. Chin.J. Theor. Appl. Mech. 46(2014) 572-581.
Google Scholar
[24]
M. Aubertin, D.E. Gill, B. Ladanyi, An internal variable model for the creep of rocksalt. Rock Mech. Rock Eng. 24(1991) 81–97.
DOI: 10.1007/bf01032500
Google Scholar
[25]
L. Zhang, Y.R. Liu, Q. Yang, A Evaluation of reinforcement and analysis of stability of high arch dam based on gaomechanical model testing. Rock Mech. Rock Eng. 48(2015) 572-581.
DOI: 10.1007/s00603-014-0578-9
Google Scholar
[26]
Y. S. Li, C. C. Xia, Time-dependent tests on intact rocks in uniaxial compression. Int. J. Rock Mech. Min. Sci. 37(2000) 467-475.
DOI: 10.1016/s1365-1609(99)00073-8
Google Scholar