A Creep Damage Model for Rock Mass Based on Internal Variable Theory

Article Preview

Abstract:

The creep damage is discussed within Rice thermodynamic theory with internal state variable (ISV). A viscoelastic-viscoplastic model with damage is derived by giving the complementary energy density function and kinetic equations of ISVs. The viscoelastic equation covers classical component model, and three creep phases with hardening and damage effect can be described by this model. The model parameter cabibration is conducted through uniaxial creep test of analogue material by loading and unloading method. Then intrinsic thermodynamic properties in three creep stages are indicated. The thermodynamic state of material system tends to equilibrate without damage and depart from equilibrate with damage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-26

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Fakhimi, C. Fairhurst, A model for the Time-dependent behavior of rock. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 31 (1994) 117-126.

Google Scholar

[2] D.F. Malan, Simulating the time-dependent behavior of excavation in hard rock. Rock Mech. Rock Eng. 35 (2002) 225-254.

DOI: 10.1007/s00603-002-0026-0

Google Scholar

[3] Z. Hou, Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities. Int. J. Rock Mech. Min. Sci. 40 (2003) 725-738.

DOI: 10.1016/s1365-1609(03)00064-9

Google Scholar

[4] G.N. Boukharov, M.W. Chanda, N.G. Boukharov, The three processes of brittle crystalline rock creep. In. J. Rock Mech. Min. Sci & Geomech. Abstr. 32 (1995) 325-335.

DOI: 10.1016/0148-9062(94)00048-8

Google Scholar

[5] W.M. Wang, L.J. Sluys, R.D. Borst, Viscoplasticity for instability due to strain softening and strain-rate softeting. Int. J. Numer. Meth. Eng. 40 (1997) 839-3 864.

DOI: 10.1002/(sici)1097-0207(19971030)40:20<3839::aid-nme245>3.0.co;2-6

Google Scholar

[6] J.S. Jin, N.D. Cristescu, An elastic/viscoplastic model for transient creep of rock salt. Int. J. Plast. 14 (1998) 85-107.

DOI: 10.1016/s0749-6419(97)00042-9

Google Scholar

[7] N. Cristescu, Damge and failure of viscopalstic rock-like material. Int.J. Plast. 2(1986)189-204.

Google Scholar

[8] K.S. Chan, S. R. Bodner, A. F. Fossum, D. E. Munson, A damage mechanics treatment of creep failure in rock salt. Int. J. Damage Mech. 6 (1997) 122-152.

DOI: 10.1177/105678959700600201

Google Scholar

[9] J. Betten, S. Sklepus, A. Zolochevsky, A creep damage model for initially isotropic materials with different properties in tension and compression. Eng. Fract. Mech. 59 (1998) 623-641.

DOI: 10.1016/s0013-7944(97)00143-4

Google Scholar

[10] M.F. Horstemeyer, D.J. Bammann, Historical review of internal state variable theory for inelasticity. Int. J. Plast. 26 (2010) 1310-1334.

DOI: 10.1016/j.ijplas.2010.06.005

Google Scholar

[11] J. Lubliner, On the thermodynamic foundations of non-linear solids mechanics. Int. J. Non-Linear Mech. 7 (1972) 237-254.

DOI: 10.1016/0020-7462(72)90048-0

Google Scholar

[12] S.W. Park, R.A. Schapery, A viscoelastic constitutive model for particulate composites with growing damage. Int. J. Solids Struct. 34 (1997) 931-947.

DOI: 10.1016/s0020-7683(96)00066-2

Google Scholar

[13] H. R. Zhu, L. Sun, A viscoelastic-viscoplastic damage constitutive model for asphalt mixtures based on thermodynamics. Int. J. Plast. 40 (2013) 81-100.

DOI: 10.1016/j.ijplas.2012.07.005

Google Scholar

[14] J.L. Chaboche, Thermodynamic formulation of application to the viscoplasticity and viscoelasticity of metal and polymers. Int. J. Solids. Struct. 34 (1997) 2239-2254.

DOI: 10.1016/s0020-7683(96)00162-x

Google Scholar

[15] R.A. Schapery, Nonlinear Viscoelastic and Viscoplastic Constitutive Equations Based on Thermodynamics. Mech. Time Depend. Mater. 1 (1997) 209-240.

Google Scholar

[16] G. Z. Voyiadjis, A. Zolochevsky, Thermodynamic modeling of creep damage in materials with different properties in tension and compression. Int. J. Solids Struct. 37 (2000) 281- 303.

DOI: 10.1016/s0020-7683(99)00031-1

Google Scholar

[21] N.R. Hansen, H.L. Schreyer, A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int. J. Solids. Struct. 3 (1994) 359-389.

DOI: 10.1016/0020-7683(94)90112-0

Google Scholar

[17] J.R. Rice, Inelastic constitutive relation for solids: an internal- variable theory and its application to metal plasticity. J. Mech. Phys. 19 (1971) 433-455.

DOI: 10.1016/0022-5096(71)90010-x

Google Scholar

[18] W.H. Haslach, A non-equilibrium thermodynamic geometric structure for thermoviscoplasticity with maximum dissipation. Int. J. Plast. 18 (2002) 127-153.

DOI: 10.1016/s0749-6419(00)00046-2

Google Scholar

[19] Q. Yang, Y. R. Liu, J.Q. Bao, Hamilton's principle of entropy production for creep and relaxation processes. J. Eng. Mater. Technol. 132 (2010) 0110181-0110185.

Google Scholar

[20] Q. Yang, X. Chen, W. Y. Zhuo, Microscopic thermodynamic basis of normality structure of inelastic constitutive relations. Mech. Res. Commun. 32 (2005) 590-596.

DOI: 10.1016/j.mechrescom.2005.01.009

Google Scholar

[21] H. Ziegler, An Introduction to Thermomechanics. North-Holland, Amsterdam, (1977).

Google Scholar

[22] Q. Yang, X. Chen, W. Y. Zhuo, On multiscale significance of Rice's normality structure. Mech. Res. Commun. 33 (2006) 667-673.

Google Scholar

[23] L. Zhang, Y.R. Liu, Q. Yang, L.J. Xue, An internal state variable viscoelastic-viscoplastic constitutive equation with damage. Chin.J. Theor. Appl. Mech. 46(2014) 572-581.

Google Scholar

[24] M. Aubertin, D.E. Gill, B. Ladanyi, An internal variable model for the creep of rocksalt. Rock Mech. Rock Eng. 24(1991) 81–97.

DOI: 10.1007/bf01032500

Google Scholar

[25] L. Zhang, Y.R. Liu, Q. Yang, A Evaluation of reinforcement and analysis of stability of high arch dam based on gaomechanical model testing. Rock Mech. Rock Eng. 48(2015) 572-581.

DOI: 10.1007/s00603-014-0578-9

Google Scholar

[26] Y. S. Li, C. C. Xia, Time-dependent tests on intact rocks in uniaxial compression. Int. J. Rock Mech. Min. Sci. 37(2000) 467-475.

DOI: 10.1016/s1365-1609(99)00073-8

Google Scholar