[1]
JP. Cordebois, F. Sidorof, Damage induced elastic anisotropy. In: Boehler JP (ed) Mechanical behavior of anisotropic solids. Martinuus Nijhoff Publishers, The Hague 1982; 761–774.
DOI: 10.1007/978-94-009-6827-1_44
Google Scholar
[2]
LM. Kachanov, Time rupture process under creep conditions, Izv. ARad. SSSR Teckh, Nauk 1958; 8: 26-31.
Google Scholar
[3]
AI. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part 1-Yield criteria and flow rules for porous ductile media. ASME J Eng Mat Tech 99 (1977) 1-15.
DOI: 10.2172/7351470
Google Scholar
[4]
S. Murakami, N. Ohno, A continuum theory of creep and creep damage. 3rd IUTAM Symp Creep in Struct (1980) 422-424.
DOI: 10.1007/978-3-642-81598-0_28
Google Scholar
[5]
J. Lemaitre, Coupled elasto-plasticity and damage constitutive equations. Comput Meth App Mech Eng 51 (1985) 31-49.
Google Scholar
[6]
J. L. Chaboche, Continuous Damage Mechanics: A Tool to Describe Phenomena Before Crack Initiation. Nucl Eng Des 64 (1981) 233–247.
DOI: 10.1016/0029-5493(81)90007-8
Google Scholar
[7]
J. L. Chaboche, Anisotropic creep damage in the framework of continuum damage mechanics. Nucl Eng Des. 79 (1984) 309-319.
DOI: 10.1016/0029-5493(84)90046-3
Google Scholar
[8]
F. Armero, SA. Oller, General Framework for Continuum Damage Models. II. Integration Algorithms with pplications to the Numerical Simulation of Porous Metals. Int. J. Solids Struct 37 (2000) 7437–7464.
DOI: 10.1016/s0020-7683(00)00206-7
Google Scholar
[9]
DR. Hayhurst, The use of continuum damage mechanics in creep analysis for design. J Strain Anal Eng Des 2 (1994) 233-241.
Google Scholar
[10]
S. Castagne, AM. Habraken, S. Cescotto, Application of a Damage Model to an Aluminum Alloy. Int J Damage Mech. 12 (2003) 5–30.
DOI: 10.1177/1056789503012001001
Google Scholar
[11]
M. Brunet, F. Morestin, H. Walter-Leberre, Failure Analysis of Anisotropic Sheet-MetalsUsing aNon-local Plastic Damage Model. J Mater Process Tech 170 (2005) 457–470.
DOI: 10.1016/j.jmatprotec.2005.05.046
Google Scholar
[12]
JP. Bandstra, DA. Koss,. On the Influence of Void Clusters on Void Growth and Coalescence During Ductile Failure. Acta Mater. 56 (2008) 4429–4439.
DOI: 10.1016/j.actamat.2008.05.009
Google Scholar
[13]
Y. Gorash, H Altenbach, G. Lvov, Modelling of high-temperature inelastic behaviour of the austenitic steel AISI type 316 using a continuum damage mechanics approach. J Strain Anal Eng Des 47 (2012) 229-243.
DOI: 10.1177/0309324712440764
Google Scholar
[14]
YN. Rabotnov, Creep rupture, In: Hetenyi M, Vincenti M (eds) Proceedings of applied mechanics conference. Berlin: Stanford University. Springer, 1968, 342–349.
Google Scholar
[15]
YN. Rabotnov, Creep problems in structural members. North-Holland, Amsterdam, (1969).
Google Scholar
[16]
JL. Chaboche, The concept of effective stress applied to elasticity and to viscoplasticity in the presence of anisotropic damage, In: Boehler JP (ed) Mechanical behavior of anisotropic solids (Proceedings of Euromech Colloquium 115, Grenoble 1979). Martinus Nijhoff, The Hague, 1982; 737–760.
DOI: 10.1007/978-94-009-6827-1_43
Google Scholar
[17]
JL. Chaboche, Damage induced anisotropy: on the difficulties associated with the active/passive unilateral condition. Int J Damage Mech 1 (1992) 148–171.
DOI: 10.1177/105678959200100201
Google Scholar
[18]
J. Lemaitre, R. Desmorat, M. Sauzay, Anisotropic damage law of evolution. Eur J Mech Solids 19 (2000) 187–208.
DOI: 10.1016/s0997-7538(00)00161-3
Google Scholar
[19]
CL. Chow, TJ. Lu, On evolution laws of anisotropic damage. Eng Fract Mech 34 (1989) 679–701.
Google Scholar
[20]
CL. Chow, J. Wang, An anisotropic theory of continuum damage mechanics for ductile fracture. J Eng Fract Mech 27 (1987)547–558.
DOI: 10.1016/0013-7944(87)90108-1
Google Scholar
[21]
S. Murakami, Anisotropic damage in metals. In: Boehler JP (eds) Failure criteria of structured media. Rotterdam: A.A. Balkema, 1993; 99–119.
Google Scholar
[22]
Murakami S. Continuum Damage Mechanics. Berlin: Springer, (2012).
Google Scholar
[23]
J. Betten, Applications of tensor functions to the formulation of constitutive equations involving damage and initial anisotropy. Eng Fract Mech 25 (1986) 573–584.
DOI: 10.1016/0013-7944(86)90023-8
Google Scholar
[24]
PI. Kattan, GZ. Voyiadjis, A coupled theory of damage mechanics and finite strain elasto-plasticity-I: Damage and elastic deformations. Int J Eng Sci 28 (1990) 421-435.
DOI: 10.1016/0020-7225(90)90007-6
Google Scholar
[25]
Q-S. Zheng, J. Betten, On damage effective stress and equivalence hypothesis. Int J Damage Mech 5 (1996) 219–240.
DOI: 10.1177/105678959600500301
Google Scholar
[26]
JW. Ju, On energy-based coupled elastoplastic damage theories Constitutive modeling and computational aspects. Int J Solid Struct 25 (1989) 803-833.
DOI: 10.1016/0020-7683(89)90015-2
Google Scholar
[27]
PI. Kattan, GZ. Voyiadjis, A coupled theory of damage mechanics and finite strain elasto-plasticity-II: Damage and finite strain plasticity. Int J Eng Sci 28 (1990) 505-524.
DOI: 10.1016/0020-7225(90)90053-l
Google Scholar
[28]
M. Kawai, Constitutive model for coupled inelasticity and damage. JSME 39 (1996) 508-516.
DOI: 10.1299/jsmea1993.39.4_508
Google Scholar
[29]
H. Lammer, C. Tsakmakis, Discussion of coupled elastoplasticity and damage constitutive equations for small and finite deformations. Int J plast 16 (2000) 495-523.
DOI: 10.1016/s0749-6419(99)00074-1
Google Scholar
[30]
F. Bron, J. Besson, A Yield Function for Anisotropic Materials. Application to aluminium alloys. Int J Plast 20 (2004) 937–963.
DOI: 10.1016/j.ijplas.2003.06.001
Google Scholar
[31]
TJ. Lu, CL. Chow, On constitutive equations of inelastic solids with anisotropic damage. Theoretical App Fract Mech 14 (1990) 187-218.
DOI: 10.1016/0167-8442(90)90020-z
Google Scholar
[32]
K. Hayakawa, S. Murakami, Y. Liu, An irreversible thermodynamics theory for elastic-plastic-damage materials. Eur J Mech Sol 17 (1998) 13-32.
DOI: 10.1016/s0997-7538(98)80061-2
Google Scholar
[33]
H. Ishikawa, Subsequent yield surface probed from its current center. Int J Plast 13 (1997) 533: 549.
DOI: 10.1016/s0749-6419(97)00024-7
Google Scholar
[34]
S. Murakami, Mechanical modeling of material damage. Int J Appl Mech Trans ASME 55 (1988) 280–286.
Google Scholar
[35]
J. Lemaitre, JL. Chaboche, Mécanique des Matériaux Solides, Dunod, Paris; Mechanics of solid materials, Cambridge: Cambridge University Press, (1990).
Google Scholar
[36]
XF. Chen, CL. Chow, On damage strain energy release rate. Int J Damage Mech 4 (1995) 251–263.
Google Scholar
[37]
RK. Abu Al-Rub, GZ. Voyiadjis, On the coupling of anisotropic damage and plasticity models for ductile materials. Int J Solids Struct 40 (2003) 2611-2643.
DOI: 10.1016/s0020-7683(03)00109-4
Google Scholar
[38]
K. Saanouni, C. Forster, F. Ben Hatira, On the anelastic flow with damage. Int J Damage Mech 3 (1994) 140–169.
DOI: 10.1177/105678959400300203
Google Scholar
[39]
JR. Rice, Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity. Int J Mech Phys Solids 19 (1971) 433-455.
DOI: 10.1016/0022-5096(71)90010-x
Google Scholar
[40]
P. Germain, Cours de Mécanique des Milieux Continus. Masson et Cie, Paris, (1973).
Google Scholar
[41]
Besson, J, Cailletaud G, Chaboche JL, Forest S and Blétry M. Non-linear mechanics of materials. Dordrecht: Springer, (2010).
Google Scholar
[42]
H. Rokhgireh, A. Nayebi, Cyclic uniaxial and multiaxial loading with yield surface distortion consideration on prediction of ratcheting. Mech Mat 47 (2012) 61–74.
DOI: 10.1016/j.mechmat.2012.01.005
Google Scholar
[43]
H. Rokhgireh, A. Nayebi, A new yield surface distortion model based on Baltov and Sawczuk's model. Acta Mech 224 (2013) 1457-1469.
DOI: 10.1007/s00707-013-0827-0
Google Scholar
[44]
HP. Feigenbaum, J. Dugdale, Dafalias YF, Kourousis K and Plesek J. Multiaxial ratcheting with advanced kinematic and directional distortional hardening rules. Int J of Solids Struct 49 (2012) 3063-3076.
DOI: 10.1016/j.ijsolstr.2012.06.006
Google Scholar
[45]
E. Shiratori, K. Ikegami, F. Yoshida, Analysis of stress-strain relations by use of an anisotropic hardening plastic potential. J Mech Phys Solids 27 (1979) 213-229.
DOI: 10.1016/0022-5096(79)90002-4
Google Scholar
[46]
AS. Khan, S. Huang,. Continuum Theory of Plasticity. New York: John Wiley and Sons, (1995).
Google Scholar