Using of Anisotropic Continuum Damage Mechanics to Describe Yield Surface Distortion

Article Preview

Abstract:

In this paper, yield surface distortion was studied by considering the combination of nonlinear kinematic hardening model of Chaboche and a new anisotropic continuum damage evolution model. The constitutive relations for anisotropic damage of elastoplasic materials were developed based on irreversible thermodynamics. The internal state manifold which consists of internal variables to specify the thermodynamic state of solids was described by a 2nd rank symmetric damage tensor, the kinematic hardening tensor and tensor of movement of damage potential surface. In order to describe the damage state, the fictitious continuum domain was considered and the consistent relations between real and fictitious domains were developed. It was indicated that the combination of the Chaboche’s model and model of anisotropic continuum damage leads to the well description of the subsequent yield surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-18

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] JP. Cordebois, F. Sidorof, Damage induced elastic anisotropy. In: Boehler JP (ed) Mechanical behavior of anisotropic solids. Martinuus Nijhoff Publishers, The Hague 1982; 761–774.

DOI: 10.1007/978-94-009-6827-1_44

Google Scholar

[2] LM. Kachanov, Time rupture process under creep conditions, Izv. ARad. SSSR Teckh, Nauk 1958; 8: 26-31.

Google Scholar

[3] AI. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part 1-Yield criteria and flow rules for porous ductile media. ASME J Eng Mat Tech 99 (1977) 1-15.

DOI: 10.2172/7351470

Google Scholar

[4] S. Murakami, N. Ohno, A continuum theory of creep and creep damage. 3rd IUTAM Symp Creep in Struct (1980) 422-424.

DOI: 10.1007/978-3-642-81598-0_28

Google Scholar

[5] J. Lemaitre, Coupled elasto-plasticity and damage constitutive equations. Comput Meth App Mech Eng 51 (1985) 31-49.

Google Scholar

[6] J. L. Chaboche, Continuous Damage Mechanics: A Tool to Describe Phenomena Before Crack Initiation. Nucl Eng Des 64 (1981) 233–247.

DOI: 10.1016/0029-5493(81)90007-8

Google Scholar

[7] J. L. Chaboche, Anisotropic creep damage in the framework of continuum damage mechanics. Nucl Eng Des. 79 (1984) 309-319.

DOI: 10.1016/0029-5493(84)90046-3

Google Scholar

[8] F. Armero, SA. Oller, General Framework for Continuum Damage Models. II. Integration Algorithms with pplications to the Numerical Simulation of Porous Metals. Int. J. Solids Struct 37 (2000) 7437–7464.

DOI: 10.1016/s0020-7683(00)00206-7

Google Scholar

[9] DR. Hayhurst, The use of continuum damage mechanics in creep analysis for design. J Strain Anal Eng Des 2 (1994) 233-241.

Google Scholar

[10] S. Castagne, AM. Habraken, S. Cescotto, Application of a Damage Model to an Aluminum Alloy. Int J Damage Mech. 12 (2003) 5–30.

DOI: 10.1177/1056789503012001001

Google Scholar

[11] M. Brunet, F. Morestin, H. Walter-Leberre, Failure Analysis of Anisotropic Sheet-MetalsUsing aNon-local Plastic Damage Model. J Mater Process Tech 170 (2005) 457–470.

DOI: 10.1016/j.jmatprotec.2005.05.046

Google Scholar

[12] JP. Bandstra, DA. Koss,. On the Influence of Void Clusters on Void Growth and Coalescence During Ductile Failure. Acta Mater. 56 (2008) 4429–4439.

DOI: 10.1016/j.actamat.2008.05.009

Google Scholar

[13] Y. Gorash, H Altenbach, G. Lvov, Modelling of high-temperature inelastic behaviour of the austenitic steel AISI type 316 using a continuum damage mechanics approach. J Strain Anal Eng Des 47 (2012) 229-243.

DOI: 10.1177/0309324712440764

Google Scholar

[14] YN. Rabotnov, Creep rupture, In: Hetenyi M, Vincenti M (eds) Proceedings of applied mechanics conference. Berlin: Stanford University. Springer, 1968, 342–349.

Google Scholar

[15] YN. Rabotnov, Creep problems in structural members. North-Holland, Amsterdam, (1969).

Google Scholar

[16] JL. Chaboche, The concept of effective stress applied to elasticity and to viscoplasticity in the presence of anisotropic damage, In: Boehler JP (ed) Mechanical behavior of anisotropic solids (Proceedings of Euromech Colloquium 115, Grenoble 1979). Martinus Nijhoff, The Hague, 1982; 737–760.

DOI: 10.1007/978-94-009-6827-1_43

Google Scholar

[17] JL. Chaboche, Damage induced anisotropy: on the difficulties associated with the active/passive unilateral condition. Int J Damage Mech 1 (1992) 148–171.

DOI: 10.1177/105678959200100201

Google Scholar

[18] J. Lemaitre, R. Desmorat, M. Sauzay, Anisotropic damage law of evolution. Eur J Mech Solids 19 (2000) 187–208.

DOI: 10.1016/s0997-7538(00)00161-3

Google Scholar

[19] CL. Chow, TJ. Lu, On evolution laws of anisotropic damage. Eng Fract Mech 34 (1989) 679–701.

Google Scholar

[20] CL. Chow, J. Wang, An anisotropic theory of continuum damage mechanics for ductile fracture. J Eng Fract Mech 27 (1987)547–558.

DOI: 10.1016/0013-7944(87)90108-1

Google Scholar

[21] S. Murakami, Anisotropic damage in metals. In: Boehler JP (eds) Failure criteria of structured media. Rotterdam: A.A. Balkema, 1993; 99–119.

Google Scholar

[22] Murakami S. Continuum Damage Mechanics. Berlin: Springer, (2012).

Google Scholar

[23] J. Betten, Applications of tensor functions to the formulation of constitutive equations involving damage and initial anisotropy. Eng Fract Mech 25 (1986) 573–584.

DOI: 10.1016/0013-7944(86)90023-8

Google Scholar

[24] PI. Kattan, GZ. Voyiadjis, A coupled theory of damage mechanics and finite strain elasto-plasticity-I: Damage and elastic deformations. Int J Eng Sci 28 (1990) 421-435.

DOI: 10.1016/0020-7225(90)90007-6

Google Scholar

[25] Q-S. Zheng, J. Betten, On damage effective stress and equivalence hypothesis. Int J Damage Mech 5 (1996) 219–240.

DOI: 10.1177/105678959600500301

Google Scholar

[26] JW. Ju, On energy-based coupled elastoplastic damage theories Constitutive modeling and computational aspects. Int J Solid Struct 25 (1989) 803-833.

DOI: 10.1016/0020-7683(89)90015-2

Google Scholar

[27] PI. Kattan, GZ. Voyiadjis, A coupled theory of damage mechanics and finite strain elasto-plasticity-II: Damage and finite strain plasticity. Int J Eng Sci 28 (1990) 505-524.

DOI: 10.1016/0020-7225(90)90053-l

Google Scholar

[28] M. Kawai, Constitutive model for coupled inelasticity and damage. JSME 39 (1996) 508-516.

DOI: 10.1299/jsmea1993.39.4_508

Google Scholar

[29] H. Lammer, C. Tsakmakis, Discussion of coupled elastoplasticity and damage constitutive equations for small and finite deformations. Int J plast 16 (2000) 495-523.

DOI: 10.1016/s0749-6419(99)00074-1

Google Scholar

[30] F. Bron, J. Besson, A Yield Function for Anisotropic Materials. Application to aluminium alloys. Int J Plast 20 (2004) 937–963.

DOI: 10.1016/j.ijplas.2003.06.001

Google Scholar

[31] TJ. Lu, CL. Chow, On constitutive equations of inelastic solids with anisotropic damage. Theoretical App Fract Mech 14 (1990) 187-218.

DOI: 10.1016/0167-8442(90)90020-z

Google Scholar

[32] K. Hayakawa, S. Murakami, Y. Liu, An irreversible thermodynamics theory for elastic-plastic-damage materials. Eur J Mech Sol 17 (1998) 13-32.

DOI: 10.1016/s0997-7538(98)80061-2

Google Scholar

[33] H. Ishikawa, Subsequent yield surface probed from its current center. Int J Plast 13 (1997) 533: 549.

DOI: 10.1016/s0749-6419(97)00024-7

Google Scholar

[34] S. Murakami, Mechanical modeling of material damage. Int J Appl Mech Trans ASME 55 (1988) 280–286.

Google Scholar

[35] J. Lemaitre, JL. Chaboche, Mécanique des Matériaux Solides, Dunod, Paris; Mechanics of solid materials, Cambridge: Cambridge University Press, (1990).

Google Scholar

[36] XF. Chen, CL. Chow, On damage strain energy release rate. Int J Damage Mech 4 (1995) 251–263.

Google Scholar

[37] RK. Abu Al-Rub, GZ. Voyiadjis, On the coupling of anisotropic damage and plasticity models for ductile materials. Int J Solids Struct 40 (2003) 2611-2643.

DOI: 10.1016/s0020-7683(03)00109-4

Google Scholar

[38] K. Saanouni, C. Forster, F. Ben Hatira, On the anelastic flow with damage. Int J Damage Mech 3 (1994) 140–169.

DOI: 10.1177/105678959400300203

Google Scholar

[39] JR. Rice, Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity. Int J Mech Phys Solids 19 (1971) 433-455.

DOI: 10.1016/0022-5096(71)90010-x

Google Scholar

[40] P. Germain, Cours de Mécanique des Milieux Continus. Masson et Cie, Paris, (1973).

Google Scholar

[41] Besson, J, Cailletaud G, Chaboche JL, Forest S and Blétry M. Non-linear mechanics of materials. Dordrecht: Springer, (2010).

Google Scholar

[42] H. Rokhgireh, A. Nayebi, Cyclic uniaxial and multiaxial loading with yield surface distortion consideration on prediction of ratcheting. Mech Mat 47 (2012) 61–74.

DOI: 10.1016/j.mechmat.2012.01.005

Google Scholar

[43] H. Rokhgireh, A. Nayebi, A new yield surface distortion model based on Baltov and Sawczuk's model. Acta Mech 224 (2013) 1457-1469.

DOI: 10.1007/s00707-013-0827-0

Google Scholar

[44] HP. Feigenbaum, J. Dugdale, Dafalias YF, Kourousis K and Plesek J. Multiaxial ratcheting with advanced kinematic and directional distortional hardening rules. Int J of Solids Struct 49 (2012) 3063-3076.

DOI: 10.1016/j.ijsolstr.2012.06.006

Google Scholar

[45] E. Shiratori, K. Ikegami, F. Yoshida, Analysis of stress-strain relations by use of an anisotropic hardening plastic potential. J Mech Phys Solids 27 (1979) 213-229.

DOI: 10.1016/0022-5096(79)90002-4

Google Scholar

[46] AS. Khan, S. Huang,. Continuum Theory of Plasticity. New York: John Wiley and Sons, (1995).

Google Scholar