Microstructural Modeling of Dual Phase Steel Using a Higher-Order Gradient Plasticity-Damage Model

Article Preview

Abstract:

This work focuses on the application of a higher-order gradient-dependent plasticity-damage model for microstructural modeling of dual-phase (DP) steels. Damage evolution is governed by the evolution of a nonlocal plasticity measure which is a function of the local equivalent plastic strain rate and its corresponding first-order gradient. Different RVEs of DP microstructures are virtually generated and simulated in order to predict the macroscopic mechanical response. Size effects and additional hardening due to evolution of geometrically necessary dislocations are predicted.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-128

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater., Acta Materialia, vol. 59, p.658–670, (2011).

DOI: 10.1016/j.actamat.2010.10.002

Google Scholar

[2] M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A vol. 527, p.2738–2746, (2010).

DOI: 10.1016/j.msea.2010.01.004

Google Scholar

[3] A. -P. Pierman, O. Bouaziz, T. Pardoen, P. J. Jacques, and L. Brassart, The influence of microstructure and composition on the plastic behaviour of dual-phase steels, Acta Materialia, vol. 73, p.298–311, (2014).

DOI: 10.1016/j.actamat.2014.04.015

Google Scholar

[4] J. Y. Kang, H. C. Lee, and S. H. Han, Effect of Al and Mo on the textures and microstructures of dual phase steels, Mater. Sci. Eng. A vol. 530, pp.183-190, (2011).

DOI: 10.1016/j.msea.2011.09.071

Google Scholar

[5] K. S. Choi, W. N. Liu, X. Sun, and M. A. Khaleel, Influence of martensite mechanical properties on failure mode and ductility of dual-phase steels, Metallurgical and Materials Transactions, vol. 40A, pp.796-810, (2009).

DOI: 10.1007/s11661-009-9792-6

Google Scholar

[6] S. Katani, S. Ziaei-Rad, N. Nouri, N. Saeidi, J. Kadkhodapour, N. Torabian, et al., Microstructure modelling of dual-phase steel using SEM micrographs and voronoi polycrystal models, Metallogr. Microstruct. Anal., vol. 2, p.156–169, (2013).

DOI: 10.1007/s13632-013-0075-7

Google Scholar

[7] J. H. Kim, M. G. Lee, D. Kima, D. K. Matlock, and R. H. Wagoner, Hole-expansion formability of dual-phase steels using representative volume element approach with boundary-smoothing technique, Materials Science and Engineering A, vol. 527, p.7353–7363, (2010).

DOI: 10.1016/j.msea.2010.07.099

Google Scholar

[8] S. K. Paul and A. Kumar, Micromechanics based modeling to predict flow behavior and plastic strain localization of dual phase steels, Comput. Mater. Sci. , vol. 63, pp.66-74, (2012).

DOI: 10.1016/j.commatsci.2012.05.061

Google Scholar

[9] A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, Modelling the effect of microstructural banding on the flow curve behaviour of dual-phase (DP) steels, Comput. Mater. Sci. , vol. 52, pp.46-54, (2012).

DOI: 10.1016/j.commatsci.2011.05.041

Google Scholar

[10] S. Sodjit and V. Uthaisangsuk, Microstructure based prediction of strain hardening behavior of dual phase steels, Materials and Design, vol. 41, p.370–379, (2012).

DOI: 10.1016/j.matdes.2012.05.010

Google Scholar

[11] J. Stewart, L. Jiang, J. Williams, and N. Chawla, Prediction of bulk tensile behavior of dual-phase stainless steels using constituent behavior from micropillar compression experiments, Mater Sci Eng A, vol. 534, pp.220-227, (2012).

DOI: 10.1016/j.msea.2011.11.062

Google Scholar

[12] X. Sun, K. S. Choi, W. N. Liu, and M. A. Khaleel, Predicting failure modes and ductility of dual phase steels using plastic strain localization, International Journal of Plasticity, vol. 25, pp.1888-1909, (2009).

DOI: 10.1016/j.ijplas.2008.12.012

Google Scholar

[13] X. Sun, K. S. Choi, A. Soulami, W. N. Liu, and M. A. Khaleel, On key factors influencing ductile fractures of dual phase (DP) steels, Materials Science and Engineering A, vol. 526, p.140–149, (2009).

DOI: 10.1016/j.msea.2009.08.010

Google Scholar

[14] V. Uthaisangsuk, S. Muenstermann, U. Prahl, W. Bleck, H. -P. Schmitz, and T. Pretorius, A study of microcrack formation in multiphase steel using representative volume element and damage mechanics, Comput. Mater. Sci. , vol. 50, p.1225–1232, (2011).

DOI: 10.1016/j.commatsci.2010.08.007

Google Scholar

[15] N. Vajragupta, V. Uthaisangsuk, B. Schmaling, S. Münstermann, A. Hartmaier, and W. Bleck, A micromechanical damage simulation of dual phase steels using XFEM, Computational Materials Science, vol. 54, pp.271-279, (2012).

DOI: 10.1016/j.commatsci.2011.10.035

Google Scholar

[16] N. H. Abid, R. K. Abu Al-Rub, and A. N. Palazotto, Computational modeling of the effect of equiaxed heterogeneous microstructures on strength and ductility of dual phase steels, Computational Materials Science, vol. 103, pp.20-37, (2015).

DOI: 10.1016/j.commatsci.2015.02.051

Google Scholar

[17] R. K. Abu Al-Rub, Interfacial gradient plasticity governs scale-dependent yield strength and strain hardening rates in micro/nano structured metals, International Journal of Plasticity, vol. 24, pp.1277-1306, (2008).

DOI: 10.1016/j.ijplas.2007.09.005

Google Scholar

[18] R. K. Abu Al-Rub, G. Z. Voyiadjis, and D. J. Bammann, A thermodynamic based higher-order gradient theory for size dependent plasticity, International Journal of Solids and Structures, vol. 44, pp.2888-2923, (2007).

DOI: 10.1016/j.ijsolstr.2006.08.034

Google Scholar

[19] L. Anand, O. Aslan, and S. A. Chester, A large-deformation gradient theory for elastic–plastic materials: Strain softening and regularization of shear bands, International Journal of Plasticity, vol. 30–31, pp.116-143, (2012).

DOI: 10.1016/j.ijplas.2011.10.002

Google Scholar

[20] L. Anand, M. E. Gurtin, S. P. Lele, and C. Gething, A one-dimensional theory of strain-gradient plasticity: Formulation, analysis, numerical results, Journal of Mechanics and Physics of Solids, vol. 53, pp.1789-1826, (2005).

DOI: 10.1016/j.jmps.2005.03.003

Google Scholar

[21] L. Bardella, Size effects in phenomenological strain gradient plasticity constitutively involving the plastic spin, International Journal of Engineering Science, vol. 48, pp.550-568, (2010).

DOI: 10.1016/j.ijengsci.2010.01.003

Google Scholar

[22] N. A. Fleck and J. W. Hutchinson, A reformulation of strain gradient plasticity, Journal of the Mechanics and Physics of Solids, vol. 49, pp.2245-2271, (2001).

DOI: 10.1016/s0022-5096(01)00049-7

Google Scholar

[23] P. Gudmundson, A unified treatment of strain gradient plasticity, Journal of the Mechanics and Physics of Solids, vol. 52, pp.1379-1406, (2004).

DOI: 10.1016/j.jmps.2003.11.002

Google Scholar

[24] M. E. Gurtin, On the plasticity of single crystals: free energy, microforces, plastic-strain gradients, Journal of the Mechanics and Physics of Solids, vol. 48, pp.989-1036, (2000).

DOI: 10.1016/s0022-5096(99)00059-9

Google Scholar

[25] M. E. Gurtin, On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradients, International Journal of Plasticity, vol. 19, pp.47-90, (2003).

DOI: 10.1016/s0749-6419(01)00018-3

Google Scholar

[26] J. W. Hutchinson, Generalizing J2 flow theory: Fundamental issues in strain gradient plasticity, Acta Mechanica Sinica, vol. 28, p.1078–1086, (2012).

DOI: 10.1007/s10409-012-0089-4

Google Scholar

[27] M. Kuroda and V. Tvergaard, An alternative treatment of phenomenological higher-order strain-gradient plasticity theory, International Journal of Plasticity, vol. 26, pp.507-515, (2010).

DOI: 10.1016/j.ijplas.2009.09.001

Google Scholar

[28] D. J. Luscher, D. L. McDowell, and C. A. Bronkhorst, A second gradient theoretical framework for hierarchical multiscale modeling of materials, International Journal of Plasticity, vol. 26, pp.1248-1275, (2010).

DOI: 10.1016/j.ijplas.2010.05.006

Google Scholar

[29] C. Polizzotto, A unified residual-based thermodynamic framework for strain gradient theories of plasticity, International Journal of Plasticity, vol. 27, pp.388-413, (2011).

DOI: 10.1016/j.ijplas.2010.07.001

Google Scholar

[30] K. Shizawa and H. M. Zbib, A thermodynamical theory of gradient elastoplasticity with dislocation density tensor. I: Fundamentals, International Journal of Plasticity, vol. 15, p.899–938, (1999).

DOI: 10.1016/s0749-6419(99)00018-2

Google Scholar

[31] G. Z. Voyiadjis and D. Faghihi, Thermo-mechanical strain gradient plasticity with energetic and dissipative length scales, International Journal of Plasticity, vol. 30–31, pp.218-247, (2012).

DOI: 10.1016/j.ijplas.2011.10.007

Google Scholar

[32] R. K. Abu Al-Rub and M. Ettehad, Modeling interparticle size effect on deformation behavior of metal matrix composites by a gradient enhanced plasticity model, ASME Journal of Engineering Materials and Technology, vol. 133, p.015104, (2011).

DOI: 10.1115/1.4004702

Google Scholar

[33] N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson, Strain gradient plasticity - theory and experiment, Acta Metallurgica et Materialia, vol. 42, pp.475-487, (1994).

DOI: 10.1016/0956-7151(94)90502-9

Google Scholar

[34] R. K. Abu Al-Rub and G. Z. Voyiadjis, Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments, International Journal of Plasticity, vol. 20, pp.1139-1182, (2004).

DOI: 10.1016/j.ijplas.2003.10.007

Google Scholar

[35] Abaqus, User Manual, Version 6. 10. Hibbitt, Karlsson and Sorensen, Inc.: Providence, RI., (2010).

Google Scholar

[36] M. Ettehad and R. K. Abu Al-Rub, On the numerical implementation of the higher-order strain gradient-dependent plasticity theory and its non-classical boundary conditions, Finite Elements in Analysis & Design, vol. 93, pp.50-69, (2015).

DOI: 10.1016/j.finel.2014.08.005

Google Scholar

[37] V. Uthaisangsuk, U. Prahl, and W. Bleck, Stretch-flangeability characterisation of multiphase steel using a microstructure based failure modelling, Computational Materials Science, vol. 45, p.617–623, (2009).

DOI: 10.1016/j.commatsci.2008.06.024

Google Scholar

[38] M. Sarwar and R. Priestner, Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel, Journal of Materials Science, vol. 31, pp.2091-2095, 1996/01/01 (1996).

DOI: 10.1007/bf00356631

Google Scholar

[39] M. Erdogan and S. Tekeli, The effect of martensite volume fraction and particle size on the tensile properties of a surface-carburized AISI 8620 steel with a dual-phase core microstructure, Materials Characterization, vol. 49, p.445– 454, (2003).

DOI: 10.1016/s1044-5803(03)00070-6

Google Scholar