[1]
M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater., Acta Materialia, vol. 59, p.658–670, (2011).
DOI: 10.1016/j.actamat.2010.10.002
Google Scholar
[2]
M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A vol. 527, p.2738–2746, (2010).
DOI: 10.1016/j.msea.2010.01.004
Google Scholar
[3]
A. -P. Pierman, O. Bouaziz, T. Pardoen, P. J. Jacques, and L. Brassart, The influence of microstructure and composition on the plastic behaviour of dual-phase steels, Acta Materialia, vol. 73, p.298–311, (2014).
DOI: 10.1016/j.actamat.2014.04.015
Google Scholar
[4]
J. Y. Kang, H. C. Lee, and S. H. Han, Effect of Al and Mo on the textures and microstructures of dual phase steels, Mater. Sci. Eng. A vol. 530, pp.183-190, (2011).
DOI: 10.1016/j.msea.2011.09.071
Google Scholar
[5]
K. S. Choi, W. N. Liu, X. Sun, and M. A. Khaleel, Influence of martensite mechanical properties on failure mode and ductility of dual-phase steels, Metallurgical and Materials Transactions, vol. 40A, pp.796-810, (2009).
DOI: 10.1007/s11661-009-9792-6
Google Scholar
[6]
S. Katani, S. Ziaei-Rad, N. Nouri, N. Saeidi, J. Kadkhodapour, N. Torabian, et al., Microstructure modelling of dual-phase steel using SEM micrographs and voronoi polycrystal models, Metallogr. Microstruct. Anal., vol. 2, p.156–169, (2013).
DOI: 10.1007/s13632-013-0075-7
Google Scholar
[7]
J. H. Kim, M. G. Lee, D. Kima, D. K. Matlock, and R. H. Wagoner, Hole-expansion formability of dual-phase steels using representative volume element approach with boundary-smoothing technique, Materials Science and Engineering A, vol. 527, p.7353–7363, (2010).
DOI: 10.1016/j.msea.2010.07.099
Google Scholar
[8]
S. K. Paul and A. Kumar, Micromechanics based modeling to predict flow behavior and plastic strain localization of dual phase steels, Comput. Mater. Sci. , vol. 63, pp.66-74, (2012).
DOI: 10.1016/j.commatsci.2012.05.061
Google Scholar
[9]
A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, Modelling the effect of microstructural banding on the flow curve behaviour of dual-phase (DP) steels, Comput. Mater. Sci. , vol. 52, pp.46-54, (2012).
DOI: 10.1016/j.commatsci.2011.05.041
Google Scholar
[10]
S. Sodjit and V. Uthaisangsuk, Microstructure based prediction of strain hardening behavior of dual phase steels, Materials and Design, vol. 41, p.370–379, (2012).
DOI: 10.1016/j.matdes.2012.05.010
Google Scholar
[11]
J. Stewart, L. Jiang, J. Williams, and N. Chawla, Prediction of bulk tensile behavior of dual-phase stainless steels using constituent behavior from micropillar compression experiments, Mater Sci Eng A, vol. 534, pp.220-227, (2012).
DOI: 10.1016/j.msea.2011.11.062
Google Scholar
[12]
X. Sun, K. S. Choi, W. N. Liu, and M. A. Khaleel, Predicting failure modes and ductility of dual phase steels using plastic strain localization, International Journal of Plasticity, vol. 25, pp.1888-1909, (2009).
DOI: 10.1016/j.ijplas.2008.12.012
Google Scholar
[13]
X. Sun, K. S. Choi, A. Soulami, W. N. Liu, and M. A. Khaleel, On key factors influencing ductile fractures of dual phase (DP) steels, Materials Science and Engineering A, vol. 526, p.140–149, (2009).
DOI: 10.1016/j.msea.2009.08.010
Google Scholar
[14]
V. Uthaisangsuk, S. Muenstermann, U. Prahl, W. Bleck, H. -P. Schmitz, and T. Pretorius, A study of microcrack formation in multiphase steel using representative volume element and damage mechanics, Comput. Mater. Sci. , vol. 50, p.1225–1232, (2011).
DOI: 10.1016/j.commatsci.2010.08.007
Google Scholar
[15]
N. Vajragupta, V. Uthaisangsuk, B. Schmaling, S. Münstermann, A. Hartmaier, and W. Bleck, A micromechanical damage simulation of dual phase steels using XFEM, Computational Materials Science, vol. 54, pp.271-279, (2012).
DOI: 10.1016/j.commatsci.2011.10.035
Google Scholar
[16]
N. H. Abid, R. K. Abu Al-Rub, and A. N. Palazotto, Computational modeling of the effect of equiaxed heterogeneous microstructures on strength and ductility of dual phase steels, Computational Materials Science, vol. 103, pp.20-37, (2015).
DOI: 10.1016/j.commatsci.2015.02.051
Google Scholar
[17]
R. K. Abu Al-Rub, Interfacial gradient plasticity governs scale-dependent yield strength and strain hardening rates in micro/nano structured metals, International Journal of Plasticity, vol. 24, pp.1277-1306, (2008).
DOI: 10.1016/j.ijplas.2007.09.005
Google Scholar
[18]
R. K. Abu Al-Rub, G. Z. Voyiadjis, and D. J. Bammann, A thermodynamic based higher-order gradient theory for size dependent plasticity, International Journal of Solids and Structures, vol. 44, pp.2888-2923, (2007).
DOI: 10.1016/j.ijsolstr.2006.08.034
Google Scholar
[19]
L. Anand, O. Aslan, and S. A. Chester, A large-deformation gradient theory for elastic–plastic materials: Strain softening and regularization of shear bands, International Journal of Plasticity, vol. 30–31, pp.116-143, (2012).
DOI: 10.1016/j.ijplas.2011.10.002
Google Scholar
[20]
L. Anand, M. E. Gurtin, S. P. Lele, and C. Gething, A one-dimensional theory of strain-gradient plasticity: Formulation, analysis, numerical results, Journal of Mechanics and Physics of Solids, vol. 53, pp.1789-1826, (2005).
DOI: 10.1016/j.jmps.2005.03.003
Google Scholar
[21]
L. Bardella, Size effects in phenomenological strain gradient plasticity constitutively involving the plastic spin, International Journal of Engineering Science, vol. 48, pp.550-568, (2010).
DOI: 10.1016/j.ijengsci.2010.01.003
Google Scholar
[22]
N. A. Fleck and J. W. Hutchinson, A reformulation of strain gradient plasticity, Journal of the Mechanics and Physics of Solids, vol. 49, pp.2245-2271, (2001).
DOI: 10.1016/s0022-5096(01)00049-7
Google Scholar
[23]
P. Gudmundson, A unified treatment of strain gradient plasticity, Journal of the Mechanics and Physics of Solids, vol. 52, pp.1379-1406, (2004).
DOI: 10.1016/j.jmps.2003.11.002
Google Scholar
[24]
M. E. Gurtin, On the plasticity of single crystals: free energy, microforces, plastic-strain gradients, Journal of the Mechanics and Physics of Solids, vol. 48, pp.989-1036, (2000).
DOI: 10.1016/s0022-5096(99)00059-9
Google Scholar
[25]
M. E. Gurtin, On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradients, International Journal of Plasticity, vol. 19, pp.47-90, (2003).
DOI: 10.1016/s0749-6419(01)00018-3
Google Scholar
[26]
J. W. Hutchinson, Generalizing J2 flow theory: Fundamental issues in strain gradient plasticity, Acta Mechanica Sinica, vol. 28, p.1078–1086, (2012).
DOI: 10.1007/s10409-012-0089-4
Google Scholar
[27]
M. Kuroda and V. Tvergaard, An alternative treatment of phenomenological higher-order strain-gradient plasticity theory, International Journal of Plasticity, vol. 26, pp.507-515, (2010).
DOI: 10.1016/j.ijplas.2009.09.001
Google Scholar
[28]
D. J. Luscher, D. L. McDowell, and C. A. Bronkhorst, A second gradient theoretical framework for hierarchical multiscale modeling of materials, International Journal of Plasticity, vol. 26, pp.1248-1275, (2010).
DOI: 10.1016/j.ijplas.2010.05.006
Google Scholar
[29]
C. Polizzotto, A unified residual-based thermodynamic framework for strain gradient theories of plasticity, International Journal of Plasticity, vol. 27, pp.388-413, (2011).
DOI: 10.1016/j.ijplas.2010.07.001
Google Scholar
[30]
K. Shizawa and H. M. Zbib, A thermodynamical theory of gradient elastoplasticity with dislocation density tensor. I: Fundamentals, International Journal of Plasticity, vol. 15, p.899–938, (1999).
DOI: 10.1016/s0749-6419(99)00018-2
Google Scholar
[31]
G. Z. Voyiadjis and D. Faghihi, Thermo-mechanical strain gradient plasticity with energetic and dissipative length scales, International Journal of Plasticity, vol. 30–31, pp.218-247, (2012).
DOI: 10.1016/j.ijplas.2011.10.007
Google Scholar
[32]
R. K. Abu Al-Rub and M. Ettehad, Modeling interparticle size effect on deformation behavior of metal matrix composites by a gradient enhanced plasticity model, ASME Journal of Engineering Materials and Technology, vol. 133, p.015104, (2011).
DOI: 10.1115/1.4004702
Google Scholar
[33]
N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson, Strain gradient plasticity - theory and experiment, Acta Metallurgica et Materialia, vol. 42, pp.475-487, (1994).
DOI: 10.1016/0956-7151(94)90502-9
Google Scholar
[34]
R. K. Abu Al-Rub and G. Z. Voyiadjis, Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments, International Journal of Plasticity, vol. 20, pp.1139-1182, (2004).
DOI: 10.1016/j.ijplas.2003.10.007
Google Scholar
[35]
Abaqus, User Manual, Version 6. 10. Hibbitt, Karlsson and Sorensen, Inc.: Providence, RI., (2010).
Google Scholar
[36]
M. Ettehad and R. K. Abu Al-Rub, On the numerical implementation of the higher-order strain gradient-dependent plasticity theory and its non-classical boundary conditions, Finite Elements in Analysis & Design, vol. 93, pp.50-69, (2015).
DOI: 10.1016/j.finel.2014.08.005
Google Scholar
[37]
V. Uthaisangsuk, U. Prahl, and W. Bleck, Stretch-flangeability characterisation of multiphase steel using a microstructure based failure modelling, Computational Materials Science, vol. 45, p.617–623, (2009).
DOI: 10.1016/j.commatsci.2008.06.024
Google Scholar
[38]
M. Sarwar and R. Priestner, Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel, Journal of Materials Science, vol. 31, pp.2091-2095, 1996/01/01 (1996).
DOI: 10.1007/bf00356631
Google Scholar
[39]
M. Erdogan and S. Tekeli, The effect of martensite volume fraction and particle size on the tensile properties of a surface-carburized AISI 8620 steel with a dual-phase core microstructure, Materials Characterization, vol. 49, p.445– 454, (2003).
DOI: 10.1016/s1044-5803(03)00070-6
Google Scholar