[1]
Z. Suo, C. -M. Kuo, D.M. Barnett, J.R. Willis, Fracture mechanics for piezoelectric ceramics J. Mech. Phys. Solids. 40 №4 (1992), pp.739-765).
DOI: 10.1016/0022-5096(92)90002-j
Google Scholar
[2]
Information on : http: /www. intechopen. com/books/piezoelectric-ceramics/analysis-of-mechanical-andelectrical-damages-in-piezoelectric-ceramics.
Google Scholar
[3]
Y. Mikata, Explicit determination of piezoelectric Eshelby tensors for a spheroidal inclusion, International J. of Solids and Structures 38 (2001) 7045-7063.
DOI: 10.1016/s0020-7683(00)00419-4
Google Scholar
[4]
V.V. Bolotin, Prediction of service life of machines and structures, Mashinostroenie, Moscow (1984). (in Russian).
Google Scholar
[5]
D. V. Babich Simulation of Coupled Processes of Deformation and Cracking in Elastic Brittle Materials / Strength of Materials. – 2004. – 36, N 2. – p.178 – 184.
DOI: 10.1023/b:stom.0000028309.57160.e2
Google Scholar
[6]
D.V. Babich, A statistical strength criterion for brittle materials, Strength of Materials, Vol. 43, No 5, 2011, pp.573-582.
DOI: 10.1007/s11223-011-9330-9
Google Scholar
[7]
J.D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems, Proc. Roy. Soc. London A, 241, pp.376-393. (1957).
Google Scholar
[8]
V.T. Grinchenko, A.F. Ulitko, N.A. Shulga, Electroelastcity, Kyiv Sciences Dumka, 1989, 279 p. (In Russian).
Google Scholar
[9]
V.Z. Parton, B.A. Kudryavtsev, Electromagnetoelasticity of piezoelectric and conductive bodies, Moscow: Nauka, 1988, 470 p. (In Russian).
Google Scholar
[10]
R.L. Salganik , Mechanics of bodies with a large number of cracks. Bulletin of the USSR Academy of Sciences: Mechanics of Solids, 1973, №4, pp.149-158. (In Russian).
Google Scholar
[11]
G.G. Pisarenko, Piezoceramic strength, Kiev, Naukova Dumka, 1987, 252 p. (In Russian).
Google Scholar
[12]
G.C. Sih, H. Leibowtz, Mathematical theories of brittle fracture, Fracture – An advanced treatise, Vol. II, mathematical fundamentals, Editor H. Leibowtz, Academc Press, New York, 1968, p.68 – 191.
Google Scholar
[13]
V.S. Kirilyuk, The Stress State of an Elstic Orthotropic Medium with a Penny-Shaped Crack / Int. Appl. Mech. – 2004. – 40, N 12. – p.1371 – 1377.
DOI: 10.1007/s10778-005-0042-3
Google Scholar
[14]
A.A. Pankov, Y.V. Sokolkin, Electroelasticity of porous piezocomposits materials, Mathematical modeling of systems and processes, 2002, №10, pp.95-102. (In Russian).
Google Scholar