[1]
Bazant, Z.P., and Chen, E.P., Scaling of Structural Failure, Applied Mechanics Reviews, Vol. 50, pp.593-627, (1997).
Google Scholar
[2]
Chen, Z., Continuous and Discontinuous Failure Modes, Journal of Engineering Mechanics, Vol. 122, pp.80-82, (1996).
Google Scholar
[3]
Chen, Z., Deng, M. and Chen, E.P., On the Rate-Dependent Transition from Tensile Damage to Discrete Fracture in Dynamic Brittle Failure, Theoretical and Applied Fracture Mechanics, Vol. 35, pp.229-235, (2001).
DOI: 10.1016/s0167-8442(01)00046-5
Google Scholar
[4]
Chen, Z., and Fang, H.E., A Study on the Link between Coupled Plasticity/Damage and Decohesion for Multi-Scale Modeling, Journal of Mechanical Engineering Science – Proceedings of the Institution of Mechanical Engineers Part C, Vol. 215, pp.259-263, (2001).
DOI: 10.1243/0954406011520698
Google Scholar
[5]
Chen, Z., Hu, W., and Chen, E.P., Simulation of Dynamic Failure Evolution in Brittle Solids without Using Nonlocal Terms in the Strain-Stress Space, Computer Modeling in Engineering & Sciences, Vol. 1, pp.101-106, (2000).
Google Scholar
[6]
Chen, Z., and Schreyer, H.L., On Nonlocal Damage Models for Interface Problems, International Journal of Solids and Structures, Vol. 31, pp.1241-1261, (1994).
DOI: 10.1016/0020-7683(94)90119-8
Google Scholar
[7]
Chen, Z., and Schreyer, H.L., Formulation and Computational Aspects of Plasticity and Damage Models with Application to Quasi-Brittle Materials, SAND95-0329, Sandia National Laboratories, USA. (1995).
DOI: 10.2172/120890
Google Scholar
[8]
Chen, Z., Shen, L., Mai, Y. -W., and Shen, Y. -G., A Bifurcation-based Decohesion Model for Simulating the Transition from Localization to Decohesion with the MPM, Journal of Applied Mathematics and Physics (ZAMP), Vol. 56, pp.908-930, (2005).
DOI: 10.1007/s00033-005-3011-0
Google Scholar
[9]
Klein, P.A., Foulk, J.W., Chen, E.P., Wimmer, S.A., and Gao, H., Physics-based Modeling of Brittle Fracture: Cohesive Formulations and the Application of Meshfree Methods, SAND2001-8099, Sandia National Laboratories, USA, (2000).
DOI: 10.2172/772347
Google Scholar
[10]
Ottosen, N.S., and Runesson, K., Properties of Discontinuous Bifurcation Solutions in Elasto-Plasticity, International Journal of Solids and Structures, Vol. 27, pp.401-421, (1991).
DOI: 10.1016/0020-7683(91)90131-x
Google Scholar
[11]
Schreyer, H.L., Sulsky, D., and Zhou, S. -J., Modeling Material Failure as a Strong Discontinuity with the Material Point Method, " Mechanics of Quasi-Brittle Materials and Structures: A Volume in Honor of Professor Zdenek P. Bazant, s 60th Birthday, edited by G. Pijaudier-Cabot, et al., Hermes Science Publications, Paris, pp.307-329, (1999).
Google Scholar
[12]
Yang, P., Gan, Y., Zhang, X., Chen, Z., Qi, W., and Liu, P., Improved Decohesion Modeling with the Material Point Method for Simulating Crack Evolution, International Journal of Fracture, Vol. 186, pp.177-184, (2014).
DOI: 10.1007/s10704-013-9925-1
Google Scholar