Recent Developments in Modelling of Progressive Damage in Fibre-Reinforced Composites

Article Preview

Abstract:

This paper provides an overview of recent developments in the modeling of progressive damage in fiber-reinforced composite laminates. Some insights into modeling the size effects of open-hole composite laminates under in-plane tension and compression, the significance of ply-blocking and delamination are discussed. Recent interest in the interaction and migration of matrix cracks and delamination, resulting in development of integrated XFEM-CE and floating node methods will also be presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

274-283

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. G. Green, M. R. Wisnom, and S. R. Hallett, An experimental investigation into the tensile strength scaling of notched composites, Composites Part A-Applied Science and Manufacturing, vol. 38, no. 3, p.867–878, (2007).

DOI: 10.1016/j.compositesa.2006.07.008

Google Scholar

[2] S. R. Hallett, B. G. Green, W. G. Jiang, and M. R. Wisnom, An experimental and numerical investigation into the damage mechanisms in notched composites, Composites Part A-Applied Science and Manufacturing, vol. 40, no. 5, p.613–624, (2009).

DOI: 10.1016/j.compositesa.2009.02.021

Google Scholar

[3] S. R. Hallett and M. R. Wisnom, Experimental investigation of progressive damage and the effect of layup in notched tensile tests, Journal of Composite Materials, vol. 40, no. 2, p.119–141, (2006).

DOI: 10.1177/0021998305053504

Google Scholar

[4] —, Numerical investigation of progressive damage and the effect of layup in notched tensile tests, Journal of Composite Materials, vol. 40, no. 14, p.1229–1245, (2006).

DOI: 10.1177/0021998305057432

Google Scholar

[5] M. R. Wisnom, S. R. Hallett, and C. Soutis, Scaling effects in notched composites, Journal of Composite Materials, vol. 44, no. 2, p.195–210, (2010).

DOI: 10.1177/0021998309339865

Google Scholar

[6] P. P. Camanho, P. Maimi, and C. G. Dávila, Prediction of size effects in notched laminates using continuum damage mechanics, Composites Science and Technology, vol. 67, no. 13, p.2715–2727, (2007).

DOI: 10.1016/j.compscitech.2007.02.005

Google Scholar

[7] F. Dharmawan, C. H. Wang, A. Rider et al., Computational analysis of the influence material orthotropy on the residual strength of laminated composites, in Proceedings of the 6th Australasian Congress on Applied Mechanics, ACAM 6. Perth, Australia. Engineers Australia, (2010).

Google Scholar

[8] M. J. Laffan, S. T. Pinho, P. Robinson, and L. Iannucci, Measurement of the in situ ply fracture toughness associated with mode I fibre tensile failure in FRP. Part II: Size and lay-up effects, Composites Science and Technology, vol. 70, no. 4, p.614–621, (2010).

DOI: 10.1016/j.compscitech.2009.12.011

Google Scholar

[9] X. Q. Li, S. R. Hallett, M. R. Wisnom, N. Zobeiry, R. Vaziri, and A. Poursartip, Experimental study of damage propagation in over-height compact tension tests, Composites Part A-Applied Science and Manufacturing, vol. 40, no. 12, p.1891–1899, (2009).

DOI: 10.1016/j.compositesa.2009.08.017

Google Scholar

[10] B. Y. Chen, T. E. Tay, P. M. Baiz, and S. T. Pinho, Numerical analysis of size effects on open-hole tensile composite laminates, Composites Part A: Applied Science and Manufacturing, vol. 47, no. 0, p.52 – 62, (2013).

DOI: 10.1016/j.compositesa.2012.12.001

Google Scholar

[11] M. Ridha, C. Wang, B. Chen, and T. Tay, Modelling complex progressive failure in notched composite laminates with varying sizes and stacking sequences, Composites Part A: Applied Science and Manufacturing, vol. 58, p.16–23, (2014).

DOI: 10.1016/j.compositesa.2013.11.012

Google Scholar

[12] Z. Su, T. Tay, M. Ridha, and B. Chen, Progressive damage modeling of open-hole composite laminates under compression, Composite Structures, vol. 122, no. 0, p.507 – 517, (2015).

DOI: 10.1016/j.compstruct.2014.12.022

Google Scholar

[13] S. T. Pinho, L. Iannucci, and P. Robinson, Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development, Composites Part A-Applied Science and Manufacturing, vol. 37, no. 1, p.63–73, (2006).

DOI: 10.1016/j.compositesa.2005.04.016

Google Scholar

[14] —, Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II: FE implementation, Composites Part A-Applied Science and Manufacturing, vol. 37, no. 5, p.766–777, (2006).

DOI: 10.1016/j.compositesa.2005.06.008

Google Scholar

[15] F. P. van der Meer, L. J. Sluys, S. R. Hallett, and M. R. Wisnom, Computational modeling of complex failure mechanisms in laminates, Journal of Composite Materials, vol. 46, no. 5, p.603–623, (2012).

DOI: 10.1177/0021998311410473

Google Scholar

[16] M. L. Benzeggagh and M. Kenane, EnglishMeasurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus, EnglishComposites Science and Technology, vol. 56, no. 4, p.439–449, (1996).

DOI: 10.1016/0266-3538(96)00005-x

Google Scholar

[17] K. Song, Y. Li, and C. A. Rose, Continuum damage mechanics models for the analysis of progressive failure in open-hole tension laminates, AIAA, vol. 1861, p.1–18, (2011).

DOI: 10.2514/6.2011-1861

Google Scholar

[18] T. Tay, X. Sun, and V. Tan, Recent efforts toward modeling interactions of matrix cracks and delaminations: an integrated xfem-ce approach, Advanced Composite Materials, vol. 23, no. 5-6, p.391–408, (2014).

DOI: 10.1080/09243046.2014.915092

Google Scholar

[19] B. Y. Chen, S. T. Pinho, N. V. D. Carvalho, P. M. Baiz, and T. E. Tay, A floating node method for the modelling of discontinuities in composites, Engineering Fracture Mechanics, vol. 127, no. 0, p.104 – 134, (2014).

DOI: 10.1016/j.engfracmech.2014.05.018

Google Scholar

[20] N. V. De Carvalho, B. Y. Chen, S. T. Pinho, J. G. Ratcliffe, P. M. Baiz, and T. E. Tay, Modeling delamination migration in cross-ply tape laminates, Composites Part A-Applied Science and Manufacturing (accepted), (2015).

DOI: 10.1016/j.compositesa.2015.01.021

Google Scholar

[21] A. Hansbo and P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 33-35, p.3523–3540, (2004).

DOI: 10.1016/j.cma.2003.12.041

Google Scholar

[22] R. Joffe, A. Krasnikovs, and J. Varna, COD-based simulation of transverse cracking and stiffness reduction in [S/90n]s laminates, Composites Science and Technology, vol. 61, no. 5, p.637 – 656, (2001).

DOI: 10.1016/s0266-3538(00)00172-x

Google Scholar

[23] J. A. Nairn, Matrix microcracking in composites, Comprehensive Composite Materials, vol. 2, no. 12, p.403–432, (2000).

DOI: 10.1016/b0-08-042993-9/00069-3

Google Scholar

[24] B. -Y. CHEN, Numerical modelling of scale-dependent damage and failure of composites, Ph.D. dissertation, NATIONAL UNIVERSITY OF SINGAPORE, (2013).

Google Scholar