[1]
J. Lemaitre, R. Desmorat, M. Sauzay, Anisotropic damage law of evolution, European Journal of Mechanics-A/Solids 19 (2) (2000) 187-208.
DOI: 10.1016/s0997-7538(00)00161-3
Google Scholar
[2]
L. Kachanov, Time of the rupture process under creep conditions, Isv. Akad. Nauk. SSR. Otd Tekh. Nauk 8 (1958) 26-31.
Google Scholar
[3]
J. Lemaitre, How to use damage mechanics, Nuclear Engineering and Design 80 (2) (1984) 233-245.
DOI: 10.1016/0029-5493(84)90169-9
Google Scholar
[4]
D. J. Celentano, J. -L. Chaboche, Experimental and numerical characterization of damage evolution in steels, International Journal of Plasticity 23 (10) (2007) 1739-1762.
DOI: 10.1016/j.ijplas.2007.03.008
Google Scholar
[5]
J. Cordebois, F. Sidoroff, Damage induced elastic anisotropy, in: Mechanical Behavior of Anisotropic Solids/Comportment Méchanique des Solides Anisotropes, Springer, 761-774, (1982).
DOI: 10.1007/978-94-009-6827-1_44
Google Scholar
[6]
C. Chow, J. Wang, An anisotropic theory of continuum damage mechanics for ductile fracture, Engineering Fracture Mechanics 27 (5) (1987) 547-558.
DOI: 10.1016/0013-7944(87)90108-1
Google Scholar
[7]
C. Chow, J. Wang, An anisotropic theory of elasticity for continuum damage mechanics, International Journal of Fracture 33 (1) (1987) 3-16.
Google Scholar
[8]
N. Hansen, H. Schreyer, A thermodynamically consistent framework for theories of elastoplasticity coupled with damage, International Journal of Solids and Structures 31 (3) (1994) 359-389.
DOI: 10.1016/0020-7683(94)90112-0
Google Scholar
[9]
K. Hayakawa, S. Murakami, Thermodynamical modeling of elastic-plastic damage and experimental validation of damage potential, International Journal of damage mechanics 6 (4) (1997) 333-363.
DOI: 10.1177/105678959700600401
Google Scholar
[10]
Z. P. Bazant, G. Pijaudier-Cabot, Nonlocal continuum damage, localization instability and convergence, Journal of Applied Mechanics 55 (2) (1988) 287-293.
DOI: 10.1115/1.3173674
Google Scholar
[11]
J. De Vree, W. Brekelmans, M. Van Gils, Comparison of nonlocal approaches in continuum damage mechanics, Computers & Structures 55 (4) (1995) 581-588.
DOI: 10.1016/0045-7949(94)00501-s
Google Scholar
[12]
C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, International Journal for Numerical Methods in Engineering 83 (10) (2010) 1273-1311.
DOI: 10.1002/nme.2861
Google Scholar
[13]
M. Hofacker, C. Miehe, A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns, International Journal for Numerical Methods in Engineering 93 (3) (2013) 276-301.
DOI: 10.1002/nme.4387
Google Scholar
[14]
R. Peerlings, M. Geers, R. De Borst, W. Brekelmans, A critical comparison of nonlocal and gradient-enhanced softening continua, International Journal of solids and Structures 38 (44) (2001) 7723-7746.
DOI: 10.1016/s0020-7683(01)00087-7
Google Scholar
[15]
A. Simone, H. Askes, R. Peerlings, L. Sluys, Interpolation requirements for implicit gradientenhanced continuum damage models, Communications in Numerical Methods in Engineering 19 (7) (2003) 563-572.
DOI: 10.1002/cnm.597
Google Scholar
[16]
J. Lemaitre, R. Desmorat, Engineering damage mechanics: ductile, creep, fatigue and brittle failures, Springer Science & Business Media, (2005).
DOI: 10.1002/zamm.200590044
Google Scholar
[17]
R. Desmorat, S. Cantournet, Modeling microdefects closure effect with isotropic/anisotropic damage, International Journal of Damage Mechanics.
DOI: 10.1177/1056789507069541
Google Scholar
[18]
M. Fassin, S. Wulfinghoff, S. Reese, Different Numerical Time Integration Schemes for elastoplasticity coupled to anisotropic damage (submitted), Proceedings of the International Conference On Damage Mechanics (ICDM2) 2015.
DOI: 10.4028/www.scientific.net/amm.784.217
Google Scholar
[19]
J. Ju, Consistent tangent moduli for a class of viscoplasticity, Journal of Engineering Mechanics 116 (8) (1990) 1764-1779.
DOI: 10.1061/(asce)0733-9399(1990)116:8(1764)
Google Scholar
[20]
S. Reese, On the Equivalence of Mixed Element Formulations and the Concept of Reduced Integration in Large Deformation Problems, International Journal of Nonlinear Sciences and Numerical Simulation 3 (1) (2002) 1-34.
DOI: 10.1515/ijnsns.2002.3.1.1
Google Scholar
[21]
S. Reese, On a physically stabilized one point finite element formulation for three-dimensional finite elasto-plasticity, Computer Methods in Applied Mechanics and Engineering 194 (45) (2005) 4685-4715.
DOI: 10.1016/j.cma.2004.12.012
Google Scholar