Comparison of Two Time-Integration Algorithms for an Anisotropic Damage Model Coupled with Plasticity

Article Preview

Abstract:

In this work, two time integration algorithms for the anisotropic damage model proposed by Lemaitre et al. (2000) are compared. Specifically, the standard implicit Euler scheme is compared to an algorithm which implicitly solves the elasto-plastic evolution equations and explicitly computes the damage update. To this end, a three dimensional bending example is solved using the finite element method and the results of the two algorithms are compared for different time step sizes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

292-299

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Lemaitre, R. Desmorat, M. Sauzay, Anisotropic damage law of evolution, European Journal of Mechanics-A/Solids 19 (2) (2000) 187-208.

DOI: 10.1016/s0997-7538(00)00161-3

Google Scholar

[2] L. Kachanov, Time of the rupture process under creep conditions, Isv. Akad. Nauk. SSR. Otd Tekh. Nauk 8 (1958) 26-31.

Google Scholar

[3] J. Lemaitre, How to use damage mechanics, Nuclear Engineering and Design 80 (2) (1984) 233-245.

DOI: 10.1016/0029-5493(84)90169-9

Google Scholar

[4] D. J. Celentano, J. -L. Chaboche, Experimental and numerical characterization of damage evolution in steels, International Journal of Plasticity 23 (10) (2007) 1739-1762.

DOI: 10.1016/j.ijplas.2007.03.008

Google Scholar

[5] J. Cordebois, F. Sidoroff, Damage induced elastic anisotropy, in: Mechanical Behavior of Anisotropic Solids/Comportment Méchanique des Solides Anisotropes, Springer, 761-774, (1982).

DOI: 10.1007/978-94-009-6827-1_44

Google Scholar

[6] C. Chow, J. Wang, An anisotropic theory of continuum damage mechanics for ductile fracture, Engineering Fracture Mechanics 27 (5) (1987) 547-558.

DOI: 10.1016/0013-7944(87)90108-1

Google Scholar

[7] C. Chow, J. Wang, An anisotropic theory of elasticity for continuum damage mechanics, International Journal of Fracture 33 (1) (1987) 3-16.

Google Scholar

[8] N. Hansen, H. Schreyer, A thermodynamically consistent framework for theories of elastoplasticity coupled with damage, International Journal of Solids and Structures 31 (3) (1994) 359-389.

DOI: 10.1016/0020-7683(94)90112-0

Google Scholar

[9] K. Hayakawa, S. Murakami, Thermodynamical modeling of elastic-plastic damage and experimental validation of damage potential, International Journal of damage mechanics 6 (4) (1997) 333-363.

DOI: 10.1177/105678959700600401

Google Scholar

[10] Z. P. Bazant, G. Pijaudier-Cabot, Nonlocal continuum damage, localization instability and convergence, Journal of Applied Mechanics 55 (2) (1988) 287-293.

DOI: 10.1115/1.3173674

Google Scholar

[11] J. De Vree, W. Brekelmans, M. Van Gils, Comparison of nonlocal approaches in continuum damage mechanics, Computers & Structures 55 (4) (1995) 581-588.

DOI: 10.1016/0045-7949(94)00501-s

Google Scholar

[12] C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, International Journal for Numerical Methods in Engineering 83 (10) (2010) 1273-1311.

DOI: 10.1002/nme.2861

Google Scholar

[13] M. Hofacker, C. Miehe, A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns, International Journal for Numerical Methods in Engineering 93 (3) (2013) 276-301.

DOI: 10.1002/nme.4387

Google Scholar

[14] R. Peerlings, M. Geers, R. De Borst, W. Brekelmans, A critical comparison of nonlocal and gradient-enhanced softening continua, International Journal of solids and Structures 38 (44) (2001) 7723-7746.

DOI: 10.1016/s0020-7683(01)00087-7

Google Scholar

[15] A. Simone, H. Askes, R. Peerlings, L. Sluys, Interpolation requirements for implicit gradientenhanced continuum damage models, Communications in Numerical Methods in Engineering 19 (7) (2003) 563-572.

DOI: 10.1002/cnm.597

Google Scholar

[16] J. Lemaitre, R. Desmorat, Engineering damage mechanics: ductile, creep, fatigue and brittle failures, Springer Science & Business Media, (2005).

DOI: 10.1002/zamm.200590044

Google Scholar

[17] R. Desmorat, S. Cantournet, Modeling microdefects closure effect with isotropic/anisotropic damage, International Journal of Damage Mechanics.

DOI: 10.1177/1056789507069541

Google Scholar

[18] M. Fassin, S. Wulfinghoff, S. Reese, Different Numerical Time Integration Schemes for elastoplasticity coupled to anisotropic damage (submitted), Proceedings of the International Conference On Damage Mechanics (ICDM2) 2015.

DOI: 10.4028/www.scientific.net/amm.784.217

Google Scholar

[19] J. Ju, Consistent tangent moduli for a class of viscoplasticity, Journal of Engineering Mechanics 116 (8) (1990) 1764-1779.

DOI: 10.1061/(asce)0733-9399(1990)116:8(1764)

Google Scholar

[20] S. Reese, On the Equivalence of Mixed Element Formulations and the Concept of Reduced Integration in Large Deformation Problems, International Journal of Nonlinear Sciences and Numerical Simulation 3 (1) (2002) 1-34.

DOI: 10.1515/ijnsns.2002.3.1.1

Google Scholar

[21] S. Reese, On a physically stabilized one point finite element formulation for three-dimensional finite elasto-plasticity, Computer Methods in Applied Mechanics and Engineering 194 (45) (2005) 4685-4715.

DOI: 10.1016/j.cma.2004.12.012

Google Scholar