From Damage to Fracture, a Modelization Based on Moving Discontinuities and Layers

Article Preview

Abstract:

A damage modelization is proposed based on a continuous transition from undamaged to damaged material. The evolution of damage is associated with a moving layer of finite thickness $l_c$, then initiation and propagation of damage can be unified in the same constitutive law. The driving force associated to the layer motion is a generalized release rate of energy. Using a normality rule based on this force the solution of the rate boundary value problem of propagation and displacement satisfies a variational inequation. Applications of the model are proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

325-333

Citation:

Online since:

August 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Allaire, G. and Van Goethem,N. and Jouve, F., A level set method for the numerical simulation of damage evolution, Rapport 626, Centre de mathématiques appliquées, Ecole polytechnique, (2007).

Google Scholar

[2] Bourdin, B. and Francfort, G. and Marigo, J. J, The variational approach to fracture, Journal of Elasticity, 91, 5-148, (2008).

DOI: 10.1007/s10659-007-9107-3

Google Scholar

[3] Bourdin, B. and Francfort, G. A. and Marigo, J. J., Numerical experiments in revisited brittle fracture, Journal of Mechanics and Physics of Solids, 48(4), 797-826, (2000).

DOI: 10.1016/s0022-5096(99)00028-9

Google Scholar

[4] Bui, H. D. and Dang Van, Ky and Stolz, C., Variational-principles applicable to rate boundaryvalue-problems of elastic-brittle solids with damaged zone, Comptes Rendus de l'Académie des Sciences, Série II, 292, 251-254.

Google Scholar

[5] Karma, A. and Kessler, D. and Levine,H., Phase-field model of mode III dynamic fracture, Phys. Review Letters, 8704 (4), (2001).

DOI: 10.1103/physrevlett.87.045501

Google Scholar

[6] Miehe, C. and Welschinger, F. and Hofacker, M., Thermodynamically consistent phase field models of fracture: Variational principles and multifield FE implementations, Int. J. for Numer. Methods in Engineering, 83 (10), 1273-1311, (2010).

DOI: 10.1002/nme.2861

Google Scholar

[7] Moës, N. and Stolz, C. and Bernard, P.E. and Chevaugeon, Nicolas, A level set based model for damage growth : the thick level set approach, Int. Journal for Numerical Methods in Engineering, 86(3), 358-380, (2011).

DOI: 10.1002/nme.3069

Google Scholar

[8] Peerlings, R. and de Borst, R. and Brekelmans, W. and De Vree, J., Gradient enhanced damage for quasi-brittle materials, Int. Journal for Numerical Methods in Engineering, 39, 3391-3403, (1996).

DOI: 10.1002/(sici)1097-0207(19961015)39:19<3391::aid-nme7>3.0.co;2-d

Google Scholar

[9] Pijaudier Cabot, G. and Bazant, Z., Non local damage theory, Journal of Engineering Mechanics, 113, 1512-1533, (1987).

Google Scholar

[10] Pradeilles-Duval, R. M. and Stolz, C., Mechanical transformations and discontinuities along a moving surface, J. Mech. Phys. Solids, 43, 91-121, (1995).

DOI: 10.1016/0022-5096(94)00061-9

Google Scholar

[11] Pradeilles-Duval, R. M. and Stolz, C., On the evolution of solids in the presence of irreversible phase transformation, Comptes Rendus Académie des Sciences de Paris, Série II, 313, 297-302, (1991).

Google Scholar

[12] Quoc, S. N. and Pradeilles, R. M. and Stolz, C., On a regularized propagation law in fracture and brittle damage, Comptes Rendus Acadèmie des Sciences, Série II, 309, 1515-1520, (1989).

Google Scholar

[13] Stolz, C., Bifurcation of equilibrium solutions and defects nucleation, International Journal of Fracture, 147, 103-107, (2007).

DOI: 10.1007/s10704-007-9147-5

Google Scholar

[14] Stolz, C., Thermodynamical Description of Running Discontinuities: Application to Friction and Wear, Entropy, 12, 1418-1439, (2010).

DOI: 10.3390/e12061418

Google Scholar

[15] C. Stolz, N. Moës, A new model of damage: a moving thich layer approach, Int. J. Fract., 174(1) 49-60 (2012).

DOI: 10.1007/s10704-012-9693-3

Google Scholar