[1]
Allaire, G. and Van Goethem,N. and Jouve, F., A level set method for the numerical simulation of damage evolution, Rapport 626, Centre de mathématiques appliquées, Ecole polytechnique, (2007).
Google Scholar
[2]
Bourdin, B. and Francfort, G. and Marigo, J. J, The variational approach to fracture, Journal of Elasticity, 91, 5-148, (2008).
DOI: 10.1007/s10659-007-9107-3
Google Scholar
[3]
Bourdin, B. and Francfort, G. A. and Marigo, J. J., Numerical experiments in revisited brittle fracture, Journal of Mechanics and Physics of Solids, 48(4), 797-826, (2000).
DOI: 10.1016/s0022-5096(99)00028-9
Google Scholar
[4]
Bui, H. D. and Dang Van, Ky and Stolz, C., Variational-principles applicable to rate boundaryvalue-problems of elastic-brittle solids with damaged zone, Comptes Rendus de l'Académie des Sciences, Série II, 292, 251-254.
Google Scholar
[5]
Karma, A. and Kessler, D. and Levine,H., Phase-field model of mode III dynamic fracture, Phys. Review Letters, 8704 (4), (2001).
DOI: 10.1103/physrevlett.87.045501
Google Scholar
[6]
Miehe, C. and Welschinger, F. and Hofacker, M., Thermodynamically consistent phase field models of fracture: Variational principles and multifield FE implementations, Int. J. for Numer. Methods in Engineering, 83 (10), 1273-1311, (2010).
DOI: 10.1002/nme.2861
Google Scholar
[7]
Moës, N. and Stolz, C. and Bernard, P.E. and Chevaugeon, Nicolas, A level set based model for damage growth : the thick level set approach, Int. Journal for Numerical Methods in Engineering, 86(3), 358-380, (2011).
DOI: 10.1002/nme.3069
Google Scholar
[8]
Peerlings, R. and de Borst, R. and Brekelmans, W. and De Vree, J., Gradient enhanced damage for quasi-brittle materials, Int. Journal for Numerical Methods in Engineering, 39, 3391-3403, (1996).
DOI: 10.1002/(sici)1097-0207(19961015)39:19<3391::aid-nme7>3.0.co;2-d
Google Scholar
[9]
Pijaudier Cabot, G. and Bazant, Z., Non local damage theory, Journal of Engineering Mechanics, 113, 1512-1533, (1987).
Google Scholar
[10]
Pradeilles-Duval, R. M. and Stolz, C., Mechanical transformations and discontinuities along a moving surface, J. Mech. Phys. Solids, 43, 91-121, (1995).
DOI: 10.1016/0022-5096(94)00061-9
Google Scholar
[11]
Pradeilles-Duval, R. M. and Stolz, C., On the evolution of solids in the presence of irreversible phase transformation, Comptes Rendus Académie des Sciences de Paris, Série II, 313, 297-302, (1991).
Google Scholar
[12]
Quoc, S. N. and Pradeilles, R. M. and Stolz, C., On a regularized propagation law in fracture and brittle damage, Comptes Rendus Acadèmie des Sciences, Série II, 309, 1515-1520, (1989).
Google Scholar
[13]
Stolz, C., Bifurcation of equilibrium solutions and defects nucleation, International Journal of Fracture, 147, 103-107, (2007).
DOI: 10.1007/s10704-007-9147-5
Google Scholar
[14]
Stolz, C., Thermodynamical Description of Running Discontinuities: Application to Friction and Wear, Entropy, 12, 1418-1439, (2010).
DOI: 10.3390/e12061418
Google Scholar
[15]
C. Stolz, N. Moës, A new model of damage: a moving thich layer approach, Int. J. Fract., 174(1) 49-60 (2012).
DOI: 10.1007/s10704-012-9693-3
Google Scholar