Nonlocal Continuum Damage Mechanics Approach of a Discrete Axial Chain under Non-Uniform Axial Load

Article Preview

Abstract:

The failure of a discrete elastic-damage axial system is investigated using both a discrete and anequivalent continuum approach. The discrete damage mechanics (DDM) approach is based on amicrostructured model composed of a series of periodic elastic-damage springs (axial DDM latticesystem). Such a damage discrete system can be associated with the finite difference formulation of aContinuum Damage Mechanics (CDM) evolution problem.The nonlocal CDM models considered in this paper are mainly built from a continualizationprocedure applied to centered finite difference schemes. A comparison of the discrete and thecontinuous problems for the chains shows the effectiveness of the new micromechanics-basednonlocal Continuum Damage modeling, especially for capturing scale effects.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] G. Pijaudier-Cabot, Z.P. Bažant, Nonlocal Damage Theory. J Eng Mech 113 (1987) 1512–33. doi: 10. 1061/(ASCE)0733-9399(1987)113: 10(1512).

DOI: 10.1061/(asce)0733-9399(1987)113:10(1512)

Google Scholar

[2] Z.P. Bažant, Why continuum damage is nonlocal: Justification by quasiperiodic microcrack array. Mech Res Commun 14 (1987) 407–19. doi: 10. 1016/0093-6413(87)90063-2.

DOI: 10.1016/0093-6413(87)90063-2

Google Scholar

[3] M.A. Collins, A quasicontinuum approximation for solitons in an atomic chain. Chem Phys Lett 77 (1981) 342–7. doi: 10. 1016/0009-2614(81)80161-3.

DOI: 10.1016/0009-2614(81)80161-3

Google Scholar

[4] P. Rosenau, Dynamics of nonlinear mass-spring chains near the continuum limit. Phys Lett A 118 (1986) 222–7. doi: 10. 1016/0375-9601(86)90170-2.

DOI: 10.1016/0375-9601(86)90170-2

Google Scholar

[5] N. Triantafyllidis, S. Bardenhagen, On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models. J Elast 33 (1993) 259–93. doi: 10. 1007/BF00043251.

DOI: 10.1007/bf00043251

Google Scholar

[6] I.V. Andrianov. Improved Continuous Models for Discrete Media. Math Probl Eng (2009) 2010: e986242. doi: 10. 1155/2010/986242.

Google Scholar

[7] N. Challamel, C.M. Wang, I. Elishakoff, Discrete systems behave as nonlocal structural elements: Bending, buckling and vibration analysis. Eur J Mech - ASolids 44 (2014) 125–35. doi: 10. 1016/j. euromechsol. 2013. 10. 007.

DOI: 10.1016/j.euromechsol.2013.10.007

Google Scholar

[8] N. Challamel, V. Picandet, G. Pijaudier-Cabot, From discrete to nonlocal continuum damage mechanics: Analysis of a lattice system in bending using a continualized approach. Int J Damage Mech (2014). doi: 10. 1177/1056789514560913.

DOI: 10.1177/1056789514560913

Google Scholar