[1]
F. Feyel, J. -L. Chaboche, FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Comput. Methods Appl. Mech. Eng. 183 (2000) 309–330.
DOI: 10.1016/s0045-7825(99)00224-8
Google Scholar
[2]
C. Farhat, F. -X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Numer. Methods Eng. 32 (1991) 1205–1227.
DOI: 10.1002/nme.1620320604
Google Scholar
[3]
J. Mandel, Balancing domain decomposition, Commun. Numer. Methods Eng. 9 (1993) 233–241.
Google Scholar
[4]
B.P. Wang, W.D. Pilkey, Efficient reanalysis of locally modified structures, in: First Chautauqua Finite Elem. Model., Wallace Press, Harwichport, MA, 1980: p.37–62.
Google Scholar
[5]
I. Hirai, B.P. Wang, W.D. Pilkey, An efficient zooming method for finite element analysis, Int. J. Numer. Methods Eng. 20 (1984) 1671–1683.
DOI: 10.1002/nme.1620200910
Google Scholar
[6]
K. Haidar, J.F. Dubé, G. Pijaudier-Cabot, Modelling crack propagation in concrete structures with a two scale approach, Int. J. Numer. Anal. Methods Geomech. 27 (2003) 1187–1205.
DOI: 10.1002/nag.318
Google Scholar
[7]
R.J. Guyan, Reduction of stiffness and mass matrices, AIAA J. 3 (1965) 380–380.
DOI: 10.2514/3.2874
Google Scholar
[8]
R.H.J. Peerlings, R. De Borst, W.A.M. Brekelmans, M.G.D. Geers, Gradient-enhanced damage modelling of concrete fracture, Mech. Cohesive-Frict. Mater. 3 (1998) 323–342.
DOI: 10.1002/(sici)1099-1484(1998100)3:4<323::aid-cfm51>3.0.co;2-z
Google Scholar
[9]
Description of the finite element code Cast3M, (2014). http: /www-cast3m. cea. fr.
Google Scholar
[10]
T. de Larrard, J.B. Colliat, F. Benboudjema, J.M. Torrenti, G. Nahas, Effect of the Young modulus variability on the mechanical behaviour of a nuclear containment vessel, 6th Jpn. -Korea Symp. Nucl. Therm. Hydraul. Saf. - NTHAS6 Spec. Sect. 240 (2010).
DOI: 10.1016/j.nucengdes.2010.09.031
Google Scholar
[11]
C. Giry, F. Dufour, J. Mazars, Stress-based nonlocal damage model, Int. J. Solids Struct. 48 (2011) 3431–3443.
DOI: 10.1016/j.ijsolstr.2011.08.012
Google Scholar
[12]
J. Mazars, G. Pijaudier‐Cabot, Continuum Damage Theory - Application to Concrete, J. Eng. Mech. 115 (1989) 345–365.
DOI: 10.1061/(asce)0733-9399(1989)115:2(345)
Google Scholar
[13]
F. Dufour, G. Legrain, G. Pijaudier-Cabot, A. Huerta, Estimation of crack opening from a two-dimensional continuum-based finite element computation, Int. J. Numer. Anal. Methods Geomech. 36 (2012) 1813–1830.
DOI: 10.1002/nag.1097
Google Scholar