Adaptive Zooming Method for the Simulation of Quasi-Brittle Materials

Article Preview

Abstract:

A method to simulate concrete structures (quasi-brittle material) with localized nonlinearities is presented. Based on Guyan’s condensation, it consists in replacing the elastic zones of the structure by their equivalent rigidities (super-elements). The nonlinear computation is then performed only on the zones of interest (ie, damaged). As new damaged zones may appear, the proposed method monitors the evolution of the system and re-integrates previously condensed areas if necessary. This method, applied on different tests cases, allows a substantial computation economy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

284-291

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Feyel, J. -L. Chaboche, FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Comput. Methods Appl. Mech. Eng. 183 (2000) 309–330.

DOI: 10.1016/s0045-7825(99)00224-8

Google Scholar

[2] C. Farhat, F. -X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Numer. Methods Eng. 32 (1991) 1205–1227.

DOI: 10.1002/nme.1620320604

Google Scholar

[3] J. Mandel, Balancing domain decomposition, Commun. Numer. Methods Eng. 9 (1993) 233–241.

Google Scholar

[4] B.P. Wang, W.D. Pilkey, Efficient reanalysis of locally modified structures, in: First Chautauqua Finite Elem. Model., Wallace Press, Harwichport, MA, 1980: p.37–62.

Google Scholar

[5] I. Hirai, B.P. Wang, W.D. Pilkey, An efficient zooming method for finite element analysis, Int. J. Numer. Methods Eng. 20 (1984) 1671–1683.

DOI: 10.1002/nme.1620200910

Google Scholar

[6] K. Haidar, J.F. Dubé, G. Pijaudier-Cabot, Modelling crack propagation in concrete structures with a two scale approach, Int. J. Numer. Anal. Methods Geomech. 27 (2003) 1187–1205.

DOI: 10.1002/nag.318

Google Scholar

[7] R.J. Guyan, Reduction of stiffness and mass matrices, AIAA J. 3 (1965) 380–380.

DOI: 10.2514/3.2874

Google Scholar

[8] R.H.J. Peerlings, R. De Borst, W.A.M. Brekelmans, M.G.D. Geers, Gradient-enhanced damage modelling of concrete fracture, Mech. Cohesive-Frict. Mater. 3 (1998) 323–342.

DOI: 10.1002/(sici)1099-1484(1998100)3:4<323::aid-cfm51>3.0.co;2-z

Google Scholar

[9] Description of the finite element code Cast3M, (2014). http: /www-cast3m. cea. fr.

Google Scholar

[10] T. de Larrard, J.B. Colliat, F. Benboudjema, J.M. Torrenti, G. Nahas, Effect of the Young modulus variability on the mechanical behaviour of a nuclear containment vessel, 6th Jpn. -Korea Symp. Nucl. Therm. Hydraul. Saf. - NTHAS6 Spec. Sect. 240 (2010).

DOI: 10.1016/j.nucengdes.2010.09.031

Google Scholar

[11] C. Giry, F. Dufour, J. Mazars, Stress-based nonlocal damage model, Int. J. Solids Struct. 48 (2011) 3431–3443.

DOI: 10.1016/j.ijsolstr.2011.08.012

Google Scholar

[12] J. Mazars, G. Pijaudier‐Cabot, Continuum Damage Theory - Application to Concrete, J. Eng. Mech. 115 (1989) 345–365.

DOI: 10.1061/(asce)0733-9399(1989)115:2(345)

Google Scholar

[13] F. Dufour, G. Legrain, G. Pijaudier-Cabot, A. Huerta, Estimation of crack opening from a two-dimensional continuum-based finite element computation, Int. J. Numer. Anal. Methods Geomech. 36 (2012) 1813–1830.

DOI: 10.1002/nag.1097

Google Scholar