[1]
P.P. Parlevliet, H.E.N. Bersee, A. Beukers. Residual stresses in thermoplastic composites—A study of the literature—Part I: Formation of residual stresses. Composites Part A: Applied Science and Manufacturing, 37: 1847-1857, (2006).
DOI: 10.1016/j.compositesa.2005.12.025
Google Scholar
[2]
S.R. White, H.T. Hahn. Cure cycle optimization for the reduction of processing-induced residual stresses in composite materials. Journal of Composite Materials, 27: 1352-1378, (1993).
DOI: 10.1177/002199839302701402
Google Scholar
[3]
P.P. Parlevliet, H.E.N. Bersee, A. Beukers. Residual stresses in thermoplastic composites - a study of the literature - Part III: Effects of thermal residual stresses. Composites Part a-Applied Science and Manufacturing, 38: 1581-1596, (2007).
DOI: 10.1016/j.compositesa.2006.12.005
Google Scholar
[4]
X. -L. Gong, Z. Wen, Y. Su. Experimental determination of residual stresses in composite laminates [02/θ2]S. Advanced Composite Materials: 1-15, (2014).
Google Scholar
[5]
O. Sicot, X.L. Gong, A. Cherouat, J. Lu, P. Olivier. New mlethodology of residual stress measurement in composite laminates: comparison with laminate theory. In Proceedings of 12th JNC, 1, 471-480, (2000).
Google Scholar
[6]
O. Sicot, X.L. Gong, A. Cherouat, J. Lu. Determination of residual stress in composite laminates using the incremental hole-drilling method. Journal of Composite Materials, 37: 831-844, (2003).
DOI: 10.1177/002199803031057
Google Scholar
[7]
M. Giordano, A. Calabro, C. Esposito, A. D'Amore, L. Nicolais. An acoustic-emission characterization of the failure modes in polymer-composite materials. Composites Science and Technology, 58: 1923-1928, (1998).
DOI: 10.1016/s0266-3538(98)00013-x
Google Scholar
[8]
V. Arumugam, S. Sajith, A.J. Stanley. Acoustic emission characterization of failure modes in GFRP laminates under mode I delamination. Journal of Nondestructive Evaluation, 30: 213-219, (2011).
DOI: 10.1007/s10921-011-0109-5
Google Scholar
[9]
R. Asokan, V. Arumugam, C. Santulli, S. Barath Kumar, A. Joseph Stanley. Investigation of the strength of the failure modes in GFRP laminates using acoustic emission monitoring. Int J Poly Technol, 3: 57-65, (2011).
Google Scholar
[10]
D.G. Aggelis, N.M. Barkoula, T.E. Matikas, A.S. Paipetis. Acoustic structural health monitoring of composite materials : damage identification and evaluation in cross ply laminates using acoustic emission and ultrasonics. Composites Science and Technology, 72: 1127-1133, (2012).
DOI: 10.1016/j.compscitech.2011.10.011
Google Scholar
[11]
S.V. Lomov, D.S. Ivanov, T.C. Truong, I. Verpoest, F. Baudry, K. Vanden Bosche, H. Xie. Experimental methodology of study of damage initiation and development in textile composites in uniaxial tensile test. Composites Science and Technology, 68: 2340-2349, (2008).
DOI: 10.1016/j.compscitech.2007.07.005
Google Scholar
[12]
J. -M. Berthelot, Composite materials: mechanical behavior and structural analysis, Springer New York, (1999).
Google Scholar
[13]
A. Parvizi, K. Garrett, J. Bailey. Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates. Journal of Materials Science, 13: 195-201, (1978).
DOI: 10.1007/bf00739291
Google Scholar
[14]
F. -K. Chang, M. -H. Chen. The in situ ply shear strength distributions in graphite/epoxy laminated composites. Journal of Composite Materials, 21: 708-733, (1987).
DOI: 10.1177/002199838702100802
Google Scholar
[15]
P.P. Camanho, C.G. Dávila, S.T. Pinho, L. Iannucci, P. Robinson. Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear. Composites Part A: Applied Science and Manufacturing, 37: 165-176, (2006).
DOI: 10.1016/j.compositesa.2005.04.023
Google Scholar
[16]
J. Echaabi, F. Trochu, R. Gauvin. Review of failure criteria of fibrous composite materials. Polymer Composites, 17: 786-798, (1996).
DOI: 10.1002/pc.10671
Google Scholar